Answer:
-8a(a+3b)
Step-by-step explanation:
(2a+6b)(6b−2a)−(2a+6b)^2
(2a+6b) {(6b−2a)−(2a+6b)(2a+6b)}
2(a+3b) (6b-2a-2a-6b)
2(a+3b) (-4a)
-2(a+3b) x 4a
-2 x 4a (a+3b)
-8a(a+3b)
I believe the answer is....
For solving for a
a-7= 3(b+2) ———> distribute 3(b+2)
a-7= 3b+6 ———-> add 7 on both sides
a-7= 3b+6
a+7= 3b +7 ———-> the 7’s cancel out so you’re left with....
a = 3b + 13 (That’s your answer)
Hope that helped :3
Answer:
the answer is 9730.06
Step-by-step explanation:
india is a blooody country
Let us take 'a' in the place of 'y' so the equation becomes
(y+x) (ax+b)
Step-by-step explanation:
<u>Step 1:</u>
(a + x) (ax + b)
<u>Step 2: Proof</u>
Checking polynomial identity.
(ax+b )(x+a) = FOIL
(ax+b)(x+a)
ax^2+a^2x is the First Term in the FOIL
ax^2 + a^2x + bx + ab
(ax+b)(x+a)+bx+ab is the Second Term in the FOIL
Add both expressions together from First and Second Term
= ax^2 + a^2x + bx + ab
<u>Step 3: Proof
</u>
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
Identity is Found
.
Trying with numbers now
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
((2*5)+8)(5+2) =(2*5^2)+(2^2*5)+(8*5)+(2*8)
((10)+8)(7) =(2*25)+(4*5)+(40)+(16)
(18)(7) =(50)+(20)+(56)
126 =126