1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
14

If A, B ,C are the angles of a triangle then,Please help me to prove this!​

Mathematics
1 answer:
beks73 [17]3 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π                     → A + B = π - C

                                                     → C = π - (A + B)

Use the Cofunction Identities:      sin (π/2 - A) = cos A

                                                       cos (π/2 - A) = sin A

Use the Double Angle Identity: cos 2A = 1 - 2 sin² A

Use Sum to Product Identity:  cos A - cos B = 2 sin [(A+B)/2] · sin [(A-B)/2]

<u>Proof LHS → RHS:</u>

\text{LHS:}\qquad \qquad \sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\sin \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad \sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\sin \bigg(\dfrac{\pi-(A+B)}{2}\bigg)\\\\\\.\qquad \qquad =\sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\sin \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{2}\bigg)

\text{Cofunction:}\qquad  \sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{A+B}{2}\bigg)

\text{Sum to Product:}\quad 2\sin \bigg(\dfrac{A+B}{2\cdot 2}\bigg)\cdot\cos \bigg(\dfrac{A-B}{2\cdot 2}\bigg)+\cos \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\qquad 2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot\cos \bigg(\dfrac{A-B}{4}\bigg)+1-2\sin^2 \bigg(\dfrac{A+B}{2\cdot 2}\bigg)

\text{Factor:}\qquad \qquad 1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[\cos \bigg(\dfrac{A-B}{4}\bigg)-\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\qquad 1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[\cos \bigg(\dfrac{A-B}{4}\bigg)-\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[\cos \bigg(\dfrac{A-B}{4}\bigg)-\sin \bigg(\dfrac{2\pi -(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\quad 1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \sin \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \sin \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+4\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 1+4\sin \bigg(\dfrac{\pi-C}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =1+4\sin \bigg(\dfrac{\pi-A}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = RHS \checkmark

You might be interested in
the sum of three numbers is 63. The first number is twice the second number, and the third number is three times the first numbe
HACTEHA [7]

Answer:

Step-by-step explanation:

2x+x+3(2x)=63

3x+6x=63

9x=63

9x/9=63/9

X=7

2x=14

3(2x)=42

3 0
3 years ago
You have 2 credit cards. If your budget $375 to pay off your credit card debt and you pay off the highest interest card first wh
Dvinal [7]

Answer:

the answer is b

Step-by-step explanation:

7 0
3 years ago
A person starts walking from home and walks: 4 miles east 3 miles southeast 3 miles south 4 miles southwest 3 miles east find to
Fantom [35]
A geometry program can show you the total displacement is about 10.14 miles.

_____
You can use a vector calculator to find the solution, too. Using bearing angles, the sum is
   4∠90° + 3∠135° + 3∠180° + 4∠225° + 3∠90° ≈ 10.1390∠141.6354°

_____
If you want to do it by hand, you can recognize the sum will be
   7 miles east + 3 miles south + 3 miles southeast + 4 miles southwest

Distances that are not in the direction of one of the coordinate axes can be translated to rectangular coordinates by 
   displacement*(cos(angle), sin(angle))
Angles can be measured in the conventional way—from the positive x-axis. A direction of southeast will be +315° or -45°. A direction of southwest will be +225° or -135°.

Then the sum of the displacements in rectangular coordinates is ...
   = (7, -3) + 3*(cos(-45°), sin(-45°)) + 4*(cos(-135°), sin(-135°))
   = (7, -3) + ((√2)/2)*((3, -3) + (-4, -4))
   = (7, -3) + 0.707107*(-1, -7)
   = (6.2929, -7.9497)
Then the Pythagorean theorem is used to find the direct distance from home to this displaced location.
   d = √(6.2929² +(-7.9497)²) ≈ √102.7990
   d ≈ 10.1390 . . . . miles

4 0
3 years ago
Your part time job pays you $14/h. You work approximately 12 hours/week.
kirill115 [55]

Answer:

  1. <u>BOX 1 </u>=  672.00

(14 * 12 = 168

168 * 4 = $ 672 )

     2. <u>BOX 2</u> = 282.95

(Cell phone= $45 A MONTH

Eating outside = $50 A MONTH

12 .50 * 4   = 50   (4 WEEKS A MONTH )

Transportation =  131.2 A MONTH

32.80 * 4 = 131.2  (4 WEEKS A MONTH )

Movie =  $16.75 A MONTH

Charity = $ 40 A MONTH

10 * 4  (4 WEEKS A MONTH )

<u> MONTHLY EXPENSE </u> = 45 + 50 + 131.2 + 16.75 + 40

<u> MONTHLY EXPENSE </u> = 282.95 )

      3. <u>BOX 3</u> = 389.05

Money that can be saved = Monthly income - Monthly expense

Money that can be saved = 672 -  282.95

                                          = 389.05

<h2><em><u>please give brainliest </u></em></h2>
4 0
3 years ago
The function f(x)=x^2-12x+5written in vertex form is f(x)=(x-6)^2-31what are the coordinates of the vertex
schepotkina [342]
The vertex to this question is (6, -31)
5 0
3 years ago
Other questions:
  • Which one is equivalent ​
    9·1 answer
  • A line has a gradient of 4 and passes through the post (1,7). what is the equation?
    12·2 answers
  • Functions......ugh <br>.​
    7·1 answer
  • Quadratic Functions Put the equationy = x^2 + 14a + 40 into the form y = (x - h )^2 + k: Answer: y Preview Get help: Video Poins
    12·1 answer
  • Find the measure of the arc indicated. (Only type the number.) *
    12·2 answers
  • Please help me, GodBless.
    5·1 answer
  • Please help mee (don't send a link)
    8·2 answers
  • Solve using the substitution method. What is the y coordinate of the solution?
    8·1 answer
  • 2. Solve the quadratic equation by completing the square.
    8·1 answer
  • Please help with math !!!!!!!!! will give brainliest if you do all....
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!