1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
14

If A, B ,C are the angles of a triangle then,Please help me to prove this!​

Mathematics
1 answer:
beks73 [17]3 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π                     → A + B = π - C

                                                     → C = π - (A + B)

Use the Cofunction Identities:      sin (π/2 - A) = cos A

                                                       cos (π/2 - A) = sin A

Use the Double Angle Identity: cos 2A = 1 - 2 sin² A

Use Sum to Product Identity:  cos A - cos B = 2 sin [(A+B)/2] · sin [(A-B)/2]

<u>Proof LHS → RHS:</u>

\text{LHS:}\qquad \qquad \sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\sin \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad \sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\sin \bigg(\dfrac{\pi-(A+B)}{2}\bigg)\\\\\\.\qquad \qquad =\sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\sin \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{2}\bigg)

\text{Cofunction:}\qquad  \sin \bigg(\dfrac{A}{2}\bigg)+\sin \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{A+B}{2}\bigg)

\text{Sum to Product:}\quad 2\sin \bigg(\dfrac{A+B}{2\cdot 2}\bigg)\cdot\cos \bigg(\dfrac{A-B}{2\cdot 2}\bigg)+\cos \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\qquad 2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot\cos \bigg(\dfrac{A-B}{4}\bigg)+1-2\sin^2 \bigg(\dfrac{A+B}{2\cdot 2}\bigg)

\text{Factor:}\qquad \qquad 1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[\cos \bigg(\dfrac{A-B}{4}\bigg)-\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\qquad 1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[\cos \bigg(\dfrac{A-B}{4}\bigg)-\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[\cos \bigg(\dfrac{A-B}{4}\bigg)-\sin \bigg(\dfrac{2\pi -(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\quad 1+2\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \sin \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \sin \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+4\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 1+4\sin \bigg(\dfrac{\pi-C}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =1+4\sin \bigg(\dfrac{\pi-A}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \sin \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = RHS \checkmark

You might be interested in
Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x = cos(θ) + sin(10
vivado [14]

Answer:

Step-by-step explanation:

x = cos θ + sin(10θ)

y = sin θ + cos(10θ)

Take derivative with respect to θ:

dx/dθ = -sin θ + 10 cos(10θ)

dy/dθ = cos θ - 10 sin(10θ)

Divide:

dy/dx = (dy/dθ) / (dx/dθ)

dy/dx = (cos θ - 10 sin(10θ)) / (-sin θ + 10 cos(10θ))

Evaluate the derivative at θ=0:

dy/dx = (cos 0 - 10 sin 0) / (-sin 0 + 10 cos 0)

dy/dx = 1/10

Evaluate the parametric functions at θ=0:

x = cos 0 + sin 0 = 1

y = sin 0 + cos 0 = 1

Writing the equation of the tangent line in point-slope form:

y - 1 = 1/10 (x - 1)

6 0
3 years ago
4(20 divided by 12) divided by (4-3) <br><br> PLEASE HELP
cupoosta [38]
6.66 barred..........
7 0
3 years ago
Read 2 more answers
A regular polygon has 15 sides. Which is a possible angle of rotational sym
coldgirl [10]

Answer: if i did my math correctly, 72 degrees is ur answer.

Step-by-step explanation:

6 0
3 years ago
Determine if these functions are even, odd, or neither
baherus [9]

Answer:

First Graph: the function is symmetrical around y axis -> Even

Second Graph: the function is neither

6 0
2 years ago
Nas funções f(x) = -3x+9; f(x) = 2x-4 e f(x) = 5x-5, caso construamos seus respectivos gráficos, informe respectivamente os pare
Likurg_2 [28]

1st option

{(3,0) e (0,9)}; {(2,0) e (0,-4)}; {(1,0) e (0,-5)}

see screenshot

sorry btw, no hablo espanol

8 0
3 years ago
Other questions:
  • Annie brought nickels, dimes and quarters to the store. If she has at least one of every coin, they add up to $1.00, and Annie h
    13·2 answers
  • HELP PLEZZZZZZZZZZZZZZ BRAINLIEST AND 30 POINTS to THE CORRECT ANSWER
    11·1 answer
  • PLEASE HELP ME I NEED IT QUICK I WILL GIVE BRAINLIEST
    12·1 answer
  • WILL GIVE BRAINLIEST :)
    9·1 answer
  • How many more dogs than cats were over 10 pounds?<br><br> 10<br><br> 30<br><br> 50<br><br> 100
    6·2 answers
  • What the value of x plz
    9·1 answer
  • What is the equivalent expression for 2x-3
    5·2 answers
  • Use the table and the graph to answer the questions.
    5·1 answer
  • Which data set does the box-and-whisker plot represent?
    5·1 answer
  • What number groups does -2 belong in?​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!