It’s d, 1 - t
t + 3 - 2 - 2t
we can rearrange it as
t - 2t + 3 - 2
-t + 1 is the same as 1 - t
Answer:
Step-by-step explanation:
REcall the following definition of induced operation.
Let * be a binary operation over a set S and H a subset of S. If for every a,b elements in H it happens that a*b is also in H, then the binary operation that is obtained by restricting * to H is called the induced operation.
So, according to this definition, we must show that given two matrices of the specific subset, the product is also in the subset.
For this problem, recall this property of the determinant. Given A,B matrices in Mn(R) then det(AB) = det(A)*det(B).
Case SL2(R):
Let A,B matrices in SL2(R). Then, det(A) and det(B) is different from zero. So
.
So AB is also in SL2(R).
Case GL2(R):
Let A,B matrices in GL2(R). Then, det(A)= det(B)=1 is different from zero. So
.
So AB is also in GL2(R).
With these, we have proved that the matrix multiplication over SL2(R) and GL2(R) is an induced operation from the matrix multiplication over M2(R).
Answer:
y = 300
x = 200
Step-by-step explanation:
Esta pregunta parece incompleta, parece que acá tenemos un sistema de ecuaciones:
x + y = 500
10*x + 20*y = 8000
Estas ecuaciones tienen que resolverse en conjunto, y de acá sacaremos un par de puntos (x, y) que son solución para ambas ecuaciones.
El primer paso para resolver esto es aislar una variable en una de las ecuaciones, en este caso podemos aislar x en la primera ecuación y así obtener:
x = 500 - y.
Ahora podemos reemplazar eso en la segunda ecuación y obtener:
10*(500 - y) + 20*y = 8000.
Ahora resolvemos esto para y.
5000 - 10*y + 20*y = 8000
10*y = 8000 - 5000 = 3000
y = 3000/10 = 300.
Y sabíamos que:
x = 500 - y = 500 - 300 = 200
Entonces la solución es:
y = 300
x = 200
8x - 6 - 12x^2 + 9x
2(4x-3)-3x(3x-3)
=> (2-3x)(3x-3)
=> 3(x-1)(2-3x)
You plug in number for number getting 194.8 which is equal to 2931