Answer:
Step-by-step explanation:
A. The first inequality is graphed as a shaded area below the solid line with x-and y-intercepts of 7.5 and 5, respectively. The second inequality is graphed as a shaded area above the solid line with x- and y-intercepts of 3.
The solution set is the set of integer-valued grid points one or between the lines.
__
B. The point (5, 1) is included in the solution area. Mathematically, it can be shown to satisfy the two inequalities:
2(5) +3(1) ≤ 15 ⇒ 13 ≤ 15 True
(5) +(1) ≥ 3 ⇒ 6 ≥ 3 True
__
C. The point (5, 1) is in the solution set. It means Michael can purchase 5 sandwiches and 1 hot lunch within his budget constraints. That will provide 6 meals, which is more than the minimum of 3 that he wants to provide.
Solution:
A function is always a relation but a relation is not always a fucntion.
For example
we can make a realtion of student roll number and their marks obtained in mathematics.
So we can have pairs like (a,b), (c,d)..etc.
Its a realtion but it may not be function. Because function follows that for same input there should not be diffrent output, aslo there could be many inputs to one output in the case of constant function . But this doesn't holds a necessary condition in case of relation.
Because two diffrent students with two diffrent Roll number may have same marks.
Hence the foolowing options holds True in case of a function.
A) many inputs to many outputs or one input to one output.
D) one input to one output or many inputs to one output.
Answer:
Yes
Step-by-step explanation:
Answer:
You can't have a single answer.
Step-by-step explanation:
An indiviual equation can't be solved if it has 2 variables.
You can, however, graph it.
The line will create all the possible sets of answers for the problem.