1,000/4=250
250 yards of fencing on each side.
250 yards by 250 yards.
Answer:
The sampling distribution of
is:
.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:
The standard deviation of this sampling distribution of sample proportion is:

The study was conducted using the data from 15,000 students.
Since the sample size is so large, i.e. <em>n</em> = 15000 > 30, the central limit theorem is applicable to approximate the sampling distribution of sample proportions.
So, the sampling distribution of
is:
.
Answer:
1877 computer users
Step-by-step explanation:
We have that for 95% of confident, the value of z has a value of 1.96 (attached table about it), they also mention the margin of error (E) that is 10 and finally the standard deviation (sd) that has a value of 221.
We apply the following formula:
n = [z * sd / E] ^ 2
replacing:
n = [1.96 * 221/10] ^ 2
n = 1876.27
that is, the minimum sample size is 1877
let's firstly convert it to an improper fraction.

Solution for x^2+5x=150 equation:
<span>Simplifying
x2 + 5x = 150
Reorder the terms:
5x + x2 = 150
Solving
5x + x2 = 150
Solving for variable 'x'.
Reorder the terms:
-150 + 5x + x2 = 150 + -150
Combine like terms: 150 + -150 = 0
-150 + 5x + x2 = 0
Factor a trinomial.
(-15 + -1x)(10 + -1x) = 0
Subproblem 1Set the factor '(-15 + -1x)' equal to zero and attempt to solve:
Simplifying
-15 + -1x = 0
Solving
-15 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '15' to each side of the equation.
-15 + 15 + -1x = 0 + 15
Combine like terms: -15 + 15 = 0
0 + -1x = 0 + 15
-1x = 0 + 15
Combine like terms: 0 + 15 = 15
-1x = 15
Divide each side by '-1'.
x = -15
Simplifying
x = -15
Subproblem 2Set the factor '(10 + -1x)' equal to zero and attempt to solve:
Simplifying
10 + -1x = 0
Solving
10 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-10' to each side of the equation.
10 + -10 + -1x = 0 + -10
Combine like terms: 10 + -10 = 0
0 + -1x = 0 + -10
-1x = 0 + -10
Combine like terms: 0 + -10 = -10
-1x = -10
Divide each side by '-1'.
x = 10
Simplifying
x = 10Solutionx = {-15, 10}</span>