The reason the "+ C" is not needed in the antiderivative when evaluating a definite integral is; The C's cancel each other out as desired.
<h3>How to represent Integrals?</h3>
Let us say we want to estimate the definite integral;
I = 
Now, for any C, f(x) + C is an antiderivative of f′(x).
From fundamental theorem of Calculus, we can say that;

where Ф(x) is any antiderivative of f'(x). Thus, Ф(x) = f(x) + C would not work because the C's will cancel each other.
Read more about Integrals at; brainly.com/question/22008756
#SPJ1
10y - 5x = 40 Add 5x to both sides
10y = 5x + 40 Divide both sides by 10
y =

x + 4
The
y-intercept is 4 and the
slope of the line is 
.
You can find these by comparing your equation to the equation y = mx + b, where m is the slope of the line and b is the y-intercept.
Answer:
this is how u solve this
Step-by-step explanation:
Answer:
%50
Step-by-step explanation:
%50 male - %50 female
Answer:
the answer would be A.
Step-by-step explanation:
because the number of books(n) times 2, because they have twice the number of books divided hy fifteen so fifteen is below the line. im bad at explaning trust me