1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luda [366]
3 years ago
5

The weight of meteorite A is 5 times the weight of meteorite B. If the sum of their weights is 132 tons, find the weight of each

.
Please I need help

Mathematics
1 answer:
sladkih [1.3K]3 years ago
3 0

Answer:

A: 105.6 B: 26.40

Step-by-step explanation:

if you divide 132 by 5, you get Meteorite B, 26.40, then minus that from 132, and you get Meteorite A, 105.6.

To check, do 26.40x5 and you should get 132.

You might be interested in
Find the unknown size <br>please I really need answers ​
katen-ka-za [31]

Answer:

z=80°<em><u>(</u></em><em><u>corresponding</u></em><em><u> </u></em><em><u>angles)</u></em>

<em><u>x+z=180°(linear \: pair \: ) \\ 80°  + x = 180°  \\ x= 100°</u></em>

<em><u>y=</u></em><em><u>100 </u></em><em><u>° </u></em><em><u>(</u></em><em><u>alternate</u></em><em><u> </u></em><em><u>angles</u></em><em><u>)</u></em>

<h2><em><u>Hope </u></em><em><u>it </u></em><em><u>helps</u></em><em><u> you</u></em><em><u><</u></em><em><u>3</u></em></h2>
8 0
2 years ago
HELP HELP HELP FREE BRAinlist
mestny [16]
30 ounces of water for 5 teaspoons of lemon
3 0
3 years ago
Read 2 more answers
A segment can have more than one bisector.<br> True<br> False
insens350 [35]
<span>Can a Segment have more than one bisector. Yes A segment can have more than one bisector. For every line segment, there is one perpendicular bisector that passes through the midpoint. There are infinitely many bisectors, but only one perpendicular bisector for any segment.</span>
4 0
3 years ago
Geometry math question no Guessing and Please show work thank you
Cloud [144]

here two given sides are 10 and 6,

We use the rule of triangle here:

sum of two sides> third side

checking for each option

Option A: AC=4

4+6>10, 10>10 (false)

So AC cannot be equal to 4, option A is answer.

3 0
3 years ago
Basic Computation: Find Probabilities In Problems 5-14, assume that x has a normal distribution with the specified mean and stan
Ulleksa [173]

Answer:

the answer is below

Step-by-step explanation:

The z score is used to calculate by how many standard deviations the raw score is above or below the mean. The z score is given as:

z=\frac{x-\mu}{\sigma}\\\\\mu=mean,\sigma=standard\ deviation

1) For x = 3

z=\frac{x-\mu}{\sigma}=\frac{3-4}{2}=-0.5

For x = 6

z=\frac{x-\mu}{\sigma}=\frac{6-4}{2}=1

P(3 ≤ x ≤ 6) = P(-0.5 ≤ z ≤ 1) = P(z < 1) - P(z < -0.5) = 0.8413 - 0.3085 = 0.5328

2) For x = 50

z=\frac{x-\mu}{\sigma}=\frac{50-40}{15}=0.67

For x = 70

z=\frac{x-\mu}{\sigma}=\frac{70-40}{15}=2

P(50 ≤ x ≤ 70) = P(0.67 ≤ z ≤ 2) = P(z < 2) - P(z < 0.67) = 0.9772 - 0.7486 = 0.2286

3) For x = 8

z=\frac{x-\mu}{\sigma}=\frac{8-15}{3.2}=-2.19

For x = 12

z=\frac{x-\mu}{\sigma}=\frac{12-15}{3.2}=-0.94

P(8 ≤ x ≤ 12) = P(-2.19 ≤ z ≤ -0.94) = P(z < -0.94) - P(z < -2.19) = 0.1736 - 0.0143 = 0.1593

4) For x = 30

z=\frac{x-\mu}{\sigma}=\frac{30-20}{3.4}=2.94

P(x ≥ 30) = P(z ≥ 2.94) = 1 - P(z < 2.94) = 1 - 0.9984 = 0.0016

5)  x = 90

z=\frac{x-\mu}{\sigma}=\frac{90-100}{15}=-0.67

P(x ≥ 90) = P(z ≥ -0.67) = 1 - P(z < -0.67) = 1 - 0.2514 = 0.7486

6)  For x = 10

z=\frac{x-\mu}{\sigma}=\frac{10-15}{4}=-1.25

For x = 20

z=\frac{x-\mu}{\sigma}=\frac{20-15}{4}=1.25

P(10 ≤ x ≤ 20) = P(-1.25 ≤ z ≤ 1.25) = P(z < 1.25) - P(z < -1.25) = 0.8944 - 0.1056 = 0.7888

7)  For x = 7

z=\frac{x-\mu}{\sigma}=\frac{7-5}{1.2}=1.67

For x = 9

z=\frac{x-\mu}{\sigma}=\frac{9-5}{1.2}=3.33

P(7 ≤ x ≤ 9) = P(1.67 ≤ z ≤ 3.33) = P(z < 3.33) - P(z < 1.67) = 0.9996 - 0.9525 = 0.0471

8)  For x = 40

z=\frac{x-\mu}{\sigma}=\frac{40-50}{15}=-0.67

For x = 47

z=\frac{x-\mu}{\sigma}=\frac{47-50}{15}=-0.2

P(40 ≤ x ≤ 47) = P(-0.67 ≤ z ≤ -0.2) = P(z < -0.2) - P(z < -0.67) = 0.4207 - 0.2514 = 0.1693

9)  x = 120

z=\frac{x-\mu}{\sigma}=\frac{120-10}{15}=7.33

P(x ≥ 120) = P(z ≥ 7.33) = 1 - P(z < 7.33) = 1 - 0.9999 = 0.001

10) x = 2

z=\frac{x-\mu}{\sigma}=\frac{2-3}{0.25}=-4

P(x ≥ 2) = P(z ≥ -4) = 1 - P(z < -4) = 1 - 0.0001 = 0.999

3 0
3 years ago
Other questions:
  • Help me on these questions and please explain question 26
    13·1 answer
  • (n-2) 180 divided by n
    7·1 answer
  • I need help with Tuesday can someone help
    9·1 answer
  • (I need help ASAP)
    14·1 answer
  • Answer it answer it answer it
    11·2 answers
  • The diameter of a circle is 19 find the circumference to the nearest tenth
    14·1 answer
  • Let f be a function such that f(2) ≤ f(x) for all values of x in the interval (0, 3). Does f(2) represent a relative minimum or
    7·1 answer
  • Rewrite 2/3 x 15 as a single fraction
    7·2 answers
  • You start at (6, 7). You move right 3 units and left 3 units. Where do you end?
    12·2 answers
  • A bag contains 4 red balls, 2 green balls, 3 yellow balls, and 5 blue balls. Find each probability for randomly removing balls w
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!