1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiks02 [169]
3 years ago
5

Aram says that the least common multiple of 4 and 6 is 24. Which is true about Aram's statement?

Mathematics
1 answer:
mojhsa [17]3 years ago
6 0

Answer:

a. 24 is a common multiple, but not the least common multiple

Step-by-step explanation:

To check which statement is true, we need to follow the steps below;

First, lets find the multiples of 4 and then multiples of 6

Multiples of 4 = 4, 8, 12, 16, 20, 24, 28.....................................................

Multiples of 6 =6, 12, 18, 24, 32 ................................................................

Common multiples of 4 and 6 are 12, 24

The least common multiples of 4 and 6 is 12

Therefore 24 is a common multiple of 4 and 6 but its not the least common multiple of 4 and 6 rather 12 is the least common multiple of 4 and 6.

Next lets find the factors of 4 and 6

Factors of 4 = 1, 2, 4

Factors of 6 = 1, 2, 3, 6.

Common factors of 4 and 6= 1, 2

Greatest common factor of 4 and 6 = 2

Therefore, 24 is also not the greatest common factors of 4 and 6 but rather 2 is the greatest common factor.

Therefore the only true statements of Aram is option a. 24 is a common multiple, but not the least common multiple

You might be interested in
Kim and Jay leave at the same time to travel 25 miles to the beach.Kim drives 9 miles in 12 minutes.Jay drives 10 miles in 15 mi
kow [346]
Jay will arrive before​ kim
4 0
3 years ago
Read 2 more answers
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
14) The perimeter of this isosceles triangle is represented by the
Galina-37 [17]

The isosceles triangle is missing so i have attached it.

Answer:

Length of unknown side = 5p + 6

Step-by-step explanation:

In isosceles triangle, two of the sides are equal. In the attached triangle, we see that one of the equal sides is given as 5p + 3.

Thus,the second equal side is also 5p + 3.

Now, perimeter of a triangle is the sum of the three sides.

We have two sides and let the third side be denoted as x.

Thus;

Perimeter = (5p + 3) + (5p + 3) + x

We are given perimeter = 15p + 12

Thus;

(5p + 3) + (5p + 3) + x = 15p + 12

10p + 6 + x = 15p + 12

Rearranging, we have;

x = 15p - 10p + 12 - 6

x = 5p + 6

4 0
3 years ago
Mr Ferris is hanging pictures on the wall. He would like the picture to be in the center of the wall. The picture measures 22 1/
jek_recluse [69]

Answer:

24.75

Step-by-step explanation:

Take 72 ( 6 foot in inches) subtract 22 1/2 from it. You get 49.5. divide 49.5 by 2 and you get 24.75 on each side of the wall. You're welcome . Dont forget to show work.

3 0
4 years ago
Read 2 more answers
You earned a 84% on a science test. You answered 21 questions correctly. How many questions were on the test?
sergij07 [2.7K]
20 x .80 = 16 
So the answer would be 16. 
I hope this helps :)
6 0
3 years ago
Other questions:
  • A parabola has a vertex at (3, -2). What is the axis of symmetry? x = _____
    15·2 answers
  • Brody wants to build a model ship. He has already saved $30 for the materials and plans. The materials cost $24.89 and the plans
    13·1 answer
  • The attendance at a community block party was 3 children for every 2 adults. Which could be the number of children and adults at
    14·1 answer
  • Select all answers that apply. Wave diffraction depends on the:
    15·2 answers
  • What number is the opposite of 4? Enter your answer in the box below.
    7·1 answer
  • How do you solve for y in this equation 6x 2y=2?
    7·1 answer
  • The box plots below show attendance at a local movie theater and high school basketball games: Two box plots are shown. The top
    12·1 answer
  • Help if correct will give you brainliest
    5·1 answer
  • The vertex form of the equation of a parabola is y = 2(x+ 4)2 - 7.
    14·1 answer
  • A function is graphed on a coordinate grid. as the domain values approach infinity, the range values approach infinity. as the d
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!