Answer:
These triangles cannot be proved congruent
Step-by-step explanation:
The theorems for congruence are SSS SAS ASA AAS. Here, there is only one common side and one common angle marked, therefore you cannot prove congruency.
Answer:
(-4,2)
Step-by-step explanation:
First we have to find a common multiple to use to add and find the system of equations. We need to eliminate one of the variables in order to solve.
Since 5 * 3 = 15, and 3 * -5 = 15, -15x and 15x will cancel each other out. Therefore x will be eliminated.
Before:
5x + 2y = -16
3x + 7y = 2
After:
15x + 6y = -48 <----------Now we solve for y
-15x + -35y = -10
+----------------------
-29y = -58
-29 -29
y = 2
Now what we do is we choose and equation and solve for x, since it is still unknown. Any equation is fine but I will choose the second one since it has easy numbers.
3x + 7y = 2
3x + 7(2) = 2
3x + 14 = 2
-14 -14
----------------------
3x = -12
3 3
x = -4
Therefore our final answer is (-4,2)
The formula for finding the area of a square is:

The formula for finding the area of a triangle is:

So for the square the area would be:

The area for the triangle would be:
I think it would be 117
Because H is 63
So 90+90+63=243
360-243=117
I used 360 because angles in quadrilaterals add up to 360 degrees
Answer:
The correct answers are B and C