Answer:
The margin of error for a 90% confidence interval is 16.4
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 25
Standard deviation = 50

Margin of error =

Putting the values, we get,

Thus, the margin of error for a 90% confidence interval is 16.4
(A)
1,4
1,3
1,2
1,1
2,1
2,2
2,3
2,4
3,1
3,2
3,3
3,4
4,1
4,2
4,3
4,4
5,1
5,2
5,3
5,4
6,4
6,3
6,2
6,1
(B)
3%
(C)
I'm not sure about the answer for C, Sorry. Hope this helps!
Answer:
Confidence limit = [52.8%, 75.2%]
Step-by-step explanation:



±

where the value
will be taken from the z-table for 95% confidence interval
1-0.95= 0.05/2= 0.025
0.95+0.025= 0.0975
From the z-table the value of
corresponding to 0.0975 is 1.96
±

±

± 
% ±
%
so the confidence interval is
%
%
![[52.8, 75.2]](https://tex.z-dn.net/?f=%5B52.8%2C%2075.2%5D)
About 4.65 miles. Multiply 3 1/2 (3.5) by 1 1/3 (1.33) and thats how you get the answer
Answer:
(x+1)(x−1)(x+4)(x−4)
Step-by-step explanation: