The equation of the least-squared regression line is: In(Element) = 2.305 - 0.101(Time).
<h3>What is a regression line?</h3>
A regression line displays the connection between scattered data points in any set. It shows the relation between the dependent y variable and independent x variables when there is a linear pattern.
According to the given problem,
From the table we can see,
ln(Element) is the dependent variable and Time is the independent variable.
The constant = 2.305,
Time = -0.101
Hence, we can conclude, our least squared regression line will be
In (Element) = 2.305 - 0.101 (Time).
Learn more about regression line here: brainly.com/question/7656407
#SPJ2
Answer:
-17y + 16x
Step-by-step explanation:
-3(3y - 2x) + 2(5x - 4y) = -9y + 6x + 10x - 8y = -17Y + 16X.
If it is helpful, plz give me Brainliest.
Answer:
3x^2 + 3xy/2 - 7xy^2/2
Step-by-step explanation:
So we know the perimeter is 20x^2 + xy - 7y^2,
To find any perimeter you need 2l + 2w = P so,
One of the sides is 7x^2 - xy
First plug in the values,
2(7x^2-xy) + 2w = 20x^2 + xy - 7y^2
Multiply,
14x^2-2xy + 2w = 20x^2 + xy - 7y^2
Subtract,
14x^2 - 2xy - 14x^2 + 2xy + 2w = 20x^2 + xy - 7y^2 - 14x^2 + 2xy
2w = 6x^2 + 3xy - 7y^2
w = 3x^2 + 3xy/2 - 7xy^2/2
Answer:
23.1
Step-by-step explanation:
(4.2)(11)(0.5)
Answer:
b = 27 degrees
Step-by-step explanation:
90 - 63 = 27