1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
3 years ago
5

Which of the following statements is always false when x=3 y=2 and z=4

Mathematics
2 answers:
MA_775_DIABLO [31]3 years ago
6 0
I don't understand what 'cyrus' means in the 3rd statement, but every other is statement is correct.
Morgarella [4.7K]3 years ago
5 0
The correct answer is:  [A]:  " 1(x) = 1 " . 
__________________________________________________________
                   →  { that is:  " 1 *(x)  =  1 " . } .
__________________________________________________________
Explanation:
__________________________________________________________
<u>Note</u>:
__________________________________________________________
The question asks:
__________________________________________________________
<span>Which of the following statements is always false when:

                   </span>→    <span>" x = 3 " ,  " y = 2 " ,  and:  " z = 4 " ? 
</span>___________________________________________________________
with the following answer choices:
___________________________________________________________

  [A]:  " 1* (x) = 1 " ;

  [B]:  " 0 * (x) = 0 " .

  [C]:  " <span>x + y = y + x " ;
</span>
  [D]:  " <span>x(y + z) = xy + xz " .
</span>_________________________________________________________
  →  Let us consider each answer choice; and plug in the known values:
____________________________________________________________
 
Choice:  [A]:  " 1* (x) = 1 " ;  
<u>Note</u>
:  We are given: " x = 3 " ;  so; plug in "3" and solve:

                    →  1(3) = " 3 ";  and " 3 ≠ 1 " .

Furthermore:  Given:   " 1(x) = 1 " ; in the answer choice ;

Note that, on the "left-hand side" of the equation:
       
                   →  1(x) = 1 * x  = x * 1 = "x" ;  
                                     
                   →  since "any value" ; multiplied by "1" ; equals that same value.

→ As such, substitute: "x" (in lieu of "1x") ; on the "left-hand side" of the equation ;  and:
 
→  REWRITE the equation:

               →  " x = 1 " ; 

               →  Since we are given:  "x = 3"  ; substitute "3" for "x" in the equation, as follows:

               →  " 3 = 1 " ;   which is INCORRECT; 

               →  since:  " 3 ≠ 1 " .

→ This answer is ALWAYS false;  so:

Answer choice:  [A]:  " 1(x) = 1 " ; should be CORRECT.
___________________________________________________________

Choice:  [B]:  " 0 * (x) = 0 " ;

<u>Note</u>:  We are given:  " x = 3 " ;  so; plug in "3" and solve:

                    →  0(3) = 0 ;   which is: "true" in this case.

→ As such, this answer is NOT "always false" ;

→ and:  Answer choice:  [B]:  is INCORRECT.
___________________________________________________________

Choice:  [C]:  " <span>x + y = y + x " ; 
</span>
<u>Note</u>:  We are given:  " x = 3 " ;  AND:  " y = 2 " ;

So plug in these given values into the equation:

                    →  3 + 2 = 2 + 3 ; 

                    →  5 = 5.  Yes! 
                   
→ As such, this answer is NOT "always false" ; 

→ and:  Answer choice:  [C]:  is INCORRECT.
___________________________________________________________

Choice:  [D]:  " x(y + z) = xy + xz " ; 

<u>Note</u>:  We are given:  " <span>x = 3 " ;  " y = 2 " ; AND:  " z = 4 " ; 
</span>
So plug in these given values into the equation:

                    →  3(2 + 4) = (3*2) + (3*4)  ; 

                    →. 3(6) = 6 + 12 ;
                  
                    →  18 = 18.  Yes!  
                   
→ As such, this answer is NOT "always false" ; 

→ and:  Answer choice:  [D]:  is INCORRECT.
___________________________________________________________
So; the correct answer is: 
___________________________________________________________

Answer choice:  [A]:  " 1(x) = 1 " . 
<span>___________________________________________________________
                   </span>→  <span>{ that is:  " 1 *(x)  =  1 " . } .
___________________________________________________________
</span> Hope this answer—and lengthy explanation—helps! 
 Best wishes in the Brainly community—and in your academic pursuits!
You might be interested in
Which of the following is a true statement about weight loss?
ololo11 [35]
<span>In the question "Which of the following is a true statement about weight loss?" The correct answer is "To lose weight, a person must take in fewer calories than that person uses." (option a) The other statements are not true about weight loss. A pound of fat is about 3500 calories. If you eat 500 less calories than you burn every day, then after a week (7 * 500 = 3500) you will have lost a pound of fat.</span>
5 0
3 years ago
Read 2 more answers
What two numbers multiply to -112 and add up to -54
SVETLANKA909090 [29]
Xy = -112
x + y = -54

xy = -112
\frac{xy}{x} = \frac{-112}{x}
y = \frac{-112}{x}

x + y = -54
x + \frac{-112}{x} = -54
\frac{x^{2}}{x} + \frac{-112}{x} = -54
\frac{x^{2} - 112}{x} = -54
x^{2} - 112 = -54x
x^{2} + 54x - 112 = 0
x^{2} + 56x - 2x - 112 = 0
x(x) + x(56) - 2(x) - 2(56) = 0
x(x + 56) - 2(x + 56) = 0
(x - 2)(x + 56) = 0
x - 2 = 0    or    x + 56 = 0
x = 2    or    x = -56

  x + y = -54
  2 + y = -54
- 2           - 2
        y = -56
  (x, y) = (2, -56)

          or

     x + y = -54
  -56 + y = -54
+ 56        + 56
           y = 2
    (x, y) = (-56, 2)

The two numbers that multiply to -12 and add up to -54 are -56 and 2.
6 0
3 years ago
Read 2 more answers
Evaluate 4x power of 3 +4x when x=3
viva [34]

\text{Hey there!}

\text{Evaluate:\ }\bf{4x^3+4x}\text{ if x = 3}

\text{If we know what the x-value is then replace the x with 3}

\bf{4(3)^3+4(3)}

\bf{4(3)^3+12}

\text{4 = 4}

\bf{3^3=27}

\text{4(3) = 12}

\text{4(27) + 12}

\text{4(12)=108}

\text{108 + 12 = 120}

\boxed{\boxed{\text{Answer: 120}}}\checkmark

\text{Good luck on your assignment and enjoy your day!}

~\frak{LoveYourselfFirst:)}

4 0
3 years ago
Jeremy has $5.30 in nickels. Which equation can be used to find how many nickels, x, Jeremy has?
lesantik [10]
0.05x=5.30 is the answer
7 0
3 years ago
Read 2 more answers
The brick will be painted. Which measure will help the painter know how much paint to buy?
Lera25 [3.4K]

Step-by-step explanation:

B) Surface Area

C) Volume

4 0
3 years ago
Other questions:
  • An angle has a measure of (5x + 7), and another angle has a measure of (2x + 54).
    11·1 answer
  • What is the 17/5 as a mixed number in simplest form
    9·2 answers
  • 3,486 ÷ 2=n <br> use long divison to solve for the n​
    11·2 answers
  • Find the largest of the following numbers: <img src="https://tex.z-dn.net/?f=2%5E%7B3%5E4%7D%2C%202%5E%7B4%5E3%7D%2C%203%5E%7B4%
    9·1 answer
  • What grade y'all in?​
    7·2 answers
  • Help!!
    7·1 answer
  • Select all of the solution(s) to the equation. x = –8 x = –4 x = 0 x = 6 x = 192
    5·2 answers
  • Which angles are adjacent to each other?
    9·1 answer
  • This is a problem i need help with
    15·2 answers
  • Fiona finds that the distance between two cities is 83,400,000 millimeters. What is the distance between the two cities in kilom
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!