1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gregori [183]
3 years ago
9

True or false? postulates are accepted as true without proof. a. true b. false

Mathematics
2 answers:
Paladinen [302]3 years ago
6 0

Answer:

Its true :) i hope this helps

zubka84 [21]3 years ago
4 0
Correct answer would be A. True
hope this helped :D
You might be interested in
Determine the explicit equation for the arithmetic sequence that has a first term of -8 and a common difference of 3.put equatio
ss7ja [257]

Answer:

look this up on mathowl on the app store and there is ur answer

6 0
2 years ago
15. COLLEGE COSTS The table shows some college costs. How much more is tuition than
ivanzaharov [21]

Answer: but 8x-4

Step-by-step explanation:

3 0
2 years ago
Please help I am so lost!!!
ASHA 777 [7]
\bf tan\left( \frac{x}{2} \right)+\cfrac{1}{tan\left( \frac{x}{2} \right)}\\\\
-----------------------------\\\\
tan\left(\cfrac{{{ \theta}}}{2}\right)=
\begin{cases}
\pm \sqrt{\cfrac{1-cos({{ \theta}})}{1+cos({{ \theta}})}}
\\ \quad \\

\cfrac{sin({{ \theta}})}{1+cos({{ \theta}})}
\\ \quad \\

\boxed{\cfrac{1-cos({{ \theta}})}{sin({{ \theta}})}}
\end{cases}\\\\

\bf -----------------------------\\\\
\cfrac{1-cos(x)}{sin(x)}+\cfrac{1}{\frac{1-cos(x)}{sin(x)}}\implies \cfrac{1-cos(x)}{sin(x)}+\cfrac{sin(x)}{1-cos(x)}
\\\\\\
\cfrac{[1-cos(x)]^2+sin^2(x)}{sin(x)[1-cos(x)]}\implies 
\cfrac{1-2cos(x)+\boxed{cos^2(x)+sin^2(x)}}{sin(x)[1-cos(x)]}
\\\\\\
\cfrac{1-2cos(x)+\boxed{1}}{sin(x)[1-cos(x)]}\implies \cfrac{2-2cos(x)}{sin(x)[1-cos(x)]}
\\\\\\
\cfrac{2[1-cos(x)]}{sin(x)[1-cos(x)]}\implies \cfrac{2}{sin(x)}\implies 2\cdot \cfrac{1}{sin(x)}\implies 2csc(x)
4 0
3 years ago
There are two balance beams at the gym.one is 15 feet long ,theother is 162 inches long.which beam is longer?
Oduvanchick [21]
12 inches = 1 foot

Let x=length of 2nd balance beam in feet

by ratio and proportion

1/12 = x/162

multiply noth sides by 162 to isolate x

(1/12)(162) = (x/162)(162)

162/12 = x

13.5 = x

Source -->https://socratic.org/questions/at-the-gym-one-balance-beam-is-15-feet-long-while-the-other-is-162-in...<--

can you help me? brainly.com/question/3131429 
7 0
3 years ago
Read 2 more answers
Point A is located at -4/6 and point B is located at -1/6 what is the distance between points A and B
gladu [14]

Answer:

3/6 units

Step-by-step explanation:

distance is always positive

____-4/6_______________-1/6__0___________

                 |-4/6 - (-1/6)| = 3/6

7 0
3 years ago
Other questions:
  • Answer ASAP please. First right answers get brainliest!!
    8·2 answers
  • Find the value of x in the given figure.<br> A) 44° <br> B) 40° <br> C) 36° <br> D) 32°
    8·2 answers
  • Halp me plssssssssssssssssssssssssssss
    11·2 answers
  • First answer gets best marks ​
    13·1 answer
  • What is the constant rate of change between the two quantities
    6·1 answer
  • Solve the question below
    9·2 answers
  • Kierra answered to a division problem on her math text was marked as wrong.Her work is shown below why did kerra get this proble
    13·2 answers
  • a rectangle garden has a length of (y+2) and a with of (4y-1) yards. find the perimeter of the garden on terms of y.​
    5·1 answer
  • Hi i want to ask you something Emma wrote thirty-six thousand,forty-two as 3,642.Explain what she did wrong.Then write the numbe
    9·2 answers
  • What is the measure of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!