1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
3 years ago
14

Jorges printer can print out 48 pages in 0.5 hour. How many pages can he print in one hour?

Mathematics
2 answers:
Norma-Jean [14]3 years ago
8 0
You would need to do 48×2=96 pages an hour .it would be 96 pages an hour because for half an hour it is 48 pages so you need to do times two to make it one full hour.i hope this helps if you dont get how I explain it please tell me or if you already have an answer
9966 [12]3 years ago
8 0
The answer is 96 pages per hour.
You might be interested in
Please help the questions are in the picture above
svp [43]

Not sure if I'm right but I think it's 3(x - 6) (x^2 + 5x)

Step-by-step explanation:

3x^3 - 3x^2 - 90x

Apply GCF: 3 (x^3 - x^2 - 30)

Split 30 into -6 and 5

(x^3 - 6x^2) (5x^2 - 30x)

GCF of both: x^2 (x - 6) and 5x (x - 6)

DON'T FORGET TO CARRY THE 3

And your answer is 3 (x - 6) (x^2 + 5x)

5 0
3 years ago
The length of a rectangle is 12 units longer than the width. The perimeter is 7 times the width. Find the length and the width o
katen-ka-za [31]

Log explanation below; answer is at bottom.

If the length, l, is 12 units longer than the width, w, then w = l - 12. If the perimeter, p,

p = 2l +2w,

is 7 x w, then

w = p/7

When two things are set equal to the same variable, they are equal to each other, so,

l - 12 = p/7

Now you need to get rid of the p so you are only working with one variable. To do this you plug in whatever p is equal to for p, so,

l - 12 = (2l + 2w)/7 now to get rid of the w do the same thing we did with p just for w. So,

l - 12 = (2l + 2(l - 12))/7

To solve this you want to multiply both sides by 7 first to get rid of the fraction.

7l - 84 = 2l + 2(l - 12)

Next you want to distribute the 2 over the l and the 12.

7l - 84 = 2l + 2l - 24

Next you want to combine like terms on each side.

7l - 84 = 4l - 24

Next add 84 and subtract 4l from sides to isolate the variable.

3l = 60

Now divide each side by 11 to get your answer.

l = 20.

To find the width,

w = l - 12  

Just plug in and solve.

w = 20 - 12

w = 8

So your length and width are 20 and 8.

l = 20

w = 8

7 0
3 years ago
0.000000452 in scientific notation
Marta_Voda [28]

Answer:

4.52 x 10^-7

Step-by-step explanation:

you have a very small number (numbers to right of decimal) so you're exponent will be negative.

5 0
3 years ago
Read 2 more answers
Does anybody know the answer to these???
Murrr4er [49]

Answer:

I dont know what that, but I think Its 3

4 0
3 years ago
Read 2 more answers
Solve the system of equations by row-reduction. At each step, show clearly the symbol of the linear combinations that allow you
adell [148]

Answer:

1) The solution of the system is

\left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) The solution of the system is

\left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

Step-by-step explanation:

1) To solve the system of equations

\left\begin{array}{ccccccc}&3x_2&-5x_3&=&89\\6x_1&&+x_3&=&17\\x_1&-x_2&+8x_3&=&-107\end{array}\right

using the row reduction method you must:

Step 1: Write the augmented matrix of the system

\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 2: Swap rows 1 and 2

\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 3:  \left(R_1=\frac{R_1}{6}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 5: \left(R_2=\frac{R_2}{3}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 6: \left(R_3=R_3+R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]

Step 7: \left(R_3=\left(\frac{6}{37}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 8: \left(R_1=R_1-\left(\frac{1}{6}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 9: \left(R_2=R_2+\left(\frac{5}{3}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 10: Rewrite the system using the row reduced matrix:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) To solve the system of equations

\left\begin{array}{ccccccc}4x_1&-x_2&+3x_3&=&12\\2x_1&&+9x_3&=&-5\\x_1&+4x_2&+6x_3&=&-32\end{array}\right

using the row reduction method you must:

Step 1:

\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 2: \left(R_1=\frac{R_1}{4}\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 3: \left(R_2=R_2-\left(2\right)R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 5: \left(R_2=\left(2\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 6: \left(R_1=R_1+\left(\frac{1}{4}\right)R_2\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 7: \left(R_3=R_3-\left(\frac{17}{4}\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]

Step 8: \left(R_3=\left(- \frac{2}{117}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 9: \left(R_1=R_1-\left(\frac{9}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 10: \left(R_2=R_2-\left(15\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 11:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

8 0
3 years ago
Other questions:
  • F(x)=6x^2+18 how do you solve this quadratic function?
    9·1 answer
  • Slope of a line perpendicular to 5x -9y = 1
    15·1 answer
  • Solve the system <br> x+3y=22 <br> 2x-y=2
    5·2 answers
  • ................... the first graph i need the answer to What is the median number of trips taken to the food store in one week.
    9·1 answer
  • Today there were two members absent from the band
    12·2 answers
  • PLEASE HELP!!!! I WILL MARK BRAINLIEST!!!!
    6·1 answer
  • Sum of equal angles is 360<br> 1/3x+(x-20)+40+(x-10)
    6·1 answer
  • A road construction crew paves 1/5 mile every day. How much would they pave in 2 days?
    7·2 answers
  • Suppose that the genders of the three children of a certain family are soon to be revealed. Outcomes are thus triples of "girls"
    12·1 answer
  • Give me a number between 1 threw 50
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!