Answer:
In the long run, ou expect to lose $4 per game
Step-by-step explanation:
Suppose we play the following game based on tosses of a fair coin. You pay me $10, and I agree to pay you $n^2 if heads comes up first on the nth toss.
Assuming X be the toss on which the first head appears.
then the geometric distribution of X is:
X
geom(p = 1/2)
the probability function P can be computed as:

where
n = 1,2,3 ...
If I agree to pay you $n^2 if heads comes up first on the nth toss.
this implies that , you need to be paid 

![\sum \limits ^{n}_{i=1} n^2 P(X=n) =Var (X) + [E(X)]^2](https://tex.z-dn.net/?f=%5Csum%20%5Climits%20%5E%7Bn%7D_%7Bi%3D1%7D%20n%5E2%20P%28X%3Dn%29%20%3DVar%20%28X%29%20%2B%20%5BE%28X%29%5D%5E2)
∵ X
geom(p = 1/2)








Given that during the game play, You pay me $10 , the calculated expected loss = $10 - $6
= $4
∴
In the long run, you expect to lose $4 per game
For 9: stella picked 17 flowers. Idk about 10
The answer would be Q. This is because R has an undefined slope.
Step-by-step explanation:
At first you need to take its lateral surface area by using the perimeter of base of the triangle and the height of prism.
Then after calculating it you need to find out its total surface area which is asked in the question and that is calculated by adding the area of both triangles of the prism in the lateral surface area.
Then that's your answer.
And whats the rest of the question