This might help you..need more information
Answer:
7/8 estimated would be about 1 and 6/11 is almost a half so it would be estimated 1/2 so 1 - 1/2 = 1/2
You can tell that a line is parallel if the lines can go on forever without crossing or intersecting. A line is perpendicular when the lines intersect at a right angle. If the slopes are either equal or negative reciprocals, they cannot be parallel or perpendicular.
Hope this helps you!
It has been proven that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
<h3>How to prove a Line Segment?</h3>
We know that in a triangle if one angle is 90 degrees, then the other angles have to be acute.
Let us take a line l and from point P as shown in the attached file, that is, not on line l, draw two line segments PN and PM. Let PN be perpendicular to line l and PM is drawn at some other angle.
In ΔPNM, ∠N = 90°
∠P + ∠N + ∠M = 180° (Angle sum property of a triangle)
∠P + ∠M = 90°
Clearly, ∠M is an acute angle.
Thus; ∠M < ∠N
PN < PM (The side opposite to the smaller angle is smaller)
Similarly, by drawing different line segments from P to l, it can be proved that PN is smaller in comparison to all of them. Therefore, it can be observed that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
Read more about Line segment at; brainly.com/question/2437195
#SPJ1
Proving a relation for all natural numbers involves proving it for n = 1 and showing that it holds for n + 1 if it is assumed that it is true for any n.
The relation 2+4+6+...+2n = n^2+n has to be proved.
If n = 1, the right hand side is equal to 2*1 = 2 and the left hand side is equal to 1^1 + 1 = 1 + 1 = 2
Assume that the relation holds for any value of n.
2 + 4 + 6 + ... + 2n + 2(n+1) = n^2 + n + 2(n + 1)
= n^2 + n + 2n + 2
= n^2 + 2n + 1 + n + 1
= (n + 1)^2 + (n + 1)
This shows that the given relation is true for n = 1 and if it is assumed to be true for n it is also true for n + 1.
<span>By mathematical induction the relation is true for any value of n.</span>