Step 6 wants us to show two angles which are also two interior angles that are located on the same side.
Interior angles are angles that are INSIDE the parallel lines.
On the diagram given, there are two pairs of interior angles that are on the same side:
Angle VQT and angle ZRS
Angle UQT and angle WRS
Two interior angles on the same sides add up to 180°
The missing statement that would fit statement in Step 6 is:
m∠VQT + m∠ZRS = 180°
Answer: Second option
Answer:

Step-by-step explanation:
Given


Required
The equation of the perpendicular bisector.
First, calculate the midpoint of the given endpoints



Open bracket


Next, determine the slope of the given endpoints.




Next, calculate the slope of the perpendicular bisector.
When two lines are perpendicular, the relationship between them is:

In this case:

So:


Since the slope is
, the equation is:

Where:

Recall that:

So:

Hence, the equation is:

The missing word for this sentence is common
Have A Good Day :)
Plug
into the equation of the ellipsoid:

Complete the square:

Then the intersection is such that


which resembles the equation of a circle, and suggests a parameterization is polar-like coordinates. Let



(Attached is a plot of the two surfaces and the intersection; red for the positive root
, blue for the negative)