Uh oh I think it's. A carrot
Answer:
9.8ft
Step-by-step explanation:
Answer: D
Step-by-step explanation:
Consider the first equation. Subtract 3x from both sides.
y−3x=−2
Consider the second equation. Subtract x from both sides.
y−2−x=0
Add 2 to both sides. Anything plus zero gives itself.
y−x=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y−3x=−2,y−x=2
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y−3x=−2
Add 3x to both sides of the equation.
y=3x−2
Substitute 3x−2 for y in the other equation, y−x=2.
3x−2−x=2
Add 3x to −x.
2x−2=2
Add 2 to both sides of the equation.
2x=4
Divide both sides by 2.
x=2
Substitute 2 for x in y=3x−2. Because the resulting equation contains only one variable, you can solve for y directly.
y=3×2−2
Multiply 3 times 2.
y=6−2
Add −2 to 6.
y=4
The system is now solved.
y=4,x=2
We know that
case a)the equation of the vertical parabola write in vertex form is
y=a(x-h)²+k,
where (h, k) is the vertex.
Using our vertex, we have:
y=a(x-2)²-1
We know that the parabola goes through (5, 0),
so
we can use these coordinates to find the value of a:
0=a(5-2)²-1
0=a(3)²-1
0=9a-1
Add 1 to both sides:
0+1=9a-1+1
1=9a
Divide both sides by 9:
1/9 = 9a/9
1/9 = a
y=(1/9)(x-2)²-1
the answer isa=1/9case b)the equation of the horizontal parabola write in vertex form is
x=a(y-k)²+h,
where (h, k) is the vertex.
Using our vertex, we have:
x=a(y+1)²+2,
We know that the parabola goes through (5, 0),
so
we can use these coordinates to find the value of a:
5=a(0+1)²+2
5=a+2
a=5-2
a=3
x=3(y+1)²+2
the answer isa=3
see the attached figure
Answer:
(a) 0.20
(b) 31%
(c) 2.52 seconds
Step-by-step explanation:
The random variable <em>Y</em> models the amount of time the subject has to wait for the light to flash.
The density curve represents that of an Uniform distribution with parameters <em>a</em> = 1 and <em>b</em> = 5.
So, 
(a)
The area under the density curve is always 1.
The length is 5 units.
Compute the height as follows:


Thus, the height of the density curve is 0.20.
(b)
Compute the value of P (Y > 3.75) as follows:
![P(Y>3.75)=\int\limits^{5}_{3.75} {\frac{1}{b-a}} \, dy \\\\=\int\limits^{5}_{3.75} {\frac{1}{5-1}} \, dy\\\\=\frac{1}{4}\times [y]^{5}_{3.75}\\\\=\frac{5-3.75}{4}\\\\=0.3125\\\\\approx 0.31](https://tex.z-dn.net/?f=P%28Y%3E3.75%29%3D%5Cint%5Climits%5E%7B5%7D_%7B3.75%7D%20%7B%5Cfrac%7B1%7D%7Bb-a%7D%7D%20%5C%2C%20dy%20%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7B5%7D_%7B3.75%7D%20%7B%5Cfrac%7B1%7D%7B5-1%7D%7D%20%5C%2C%20dy%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5By%5D%5E%7B5%7D_%7B3.75%7D%5C%5C%5C%5C%3D%5Cfrac%7B5-3.75%7D%7B4%7D%5C%5C%5C%5C%3D0.3125%5C%5C%5C%5C%5Capprox%200.31)
Thus, the light will flash more than 3.75 seconds after the subject clicks "Start" 31% of the times.
(c)
Compute the 38th percentile as follows:

Thus, the 38th percentile is 2.52 seconds.