Answer:
<em>2</em>
Step-by-step explanation:
<em>I think because I had the same kind of question and the answer was 2 </em><em>,</em>
<em>hopefu</em><em>lly</em><em> </em><em>it</em><em> </em><em>helps</em><em> </em><em>u</em><em /><em>☺️</em>
Answer:
a and b are the best ways to convert fractions into decimals
Step-by-step explanation:
To convert a fraction to a decimal, divide the numerator (top number) by the denominator (bottom number), using either calculator or pencil and paper
2.6 x 6 = $15.6 . That’s the answer I’m pretty sure! Goodluck!
Answer:
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
Step-by-step explanation:
for
I= ∫x^n . e^ax dx
then using integration by parts we can define u and dv such that
I= ∫(x^n) . (e^ax dx) = ∫u . dv
where
u= x^n → du = n*x^(n-1) dx
dv= e^ax dx→ v = ∫e^ax dx = (e^ax) /a ( for a≠0 .when a=0 , v=∫1 dx= x)
then we know that
I= ∫u . dv = u*v - ∫v . du + C
( since d(u*v) = u*dv + v*du → u*dv = d(u*v) - v*du → ∫u*dv = ∫(d(u*v) - v*du) =
(u*v) - ∫v*du + C )
therefore
I= ∫u . dv = u*v - ∫v . du + C = (x^n)*(e^ax) /a - ∫ (e^ax) /a * n*x^(n-1) dx +C = = (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)