Answer:
$110
Step-by-step explanation:
Let a, b, and c represent the earnings of Alan, Bob, and Charles. The problem statement tells us ...
a + b + c = 480 . . . . . . the combined total of their earnings
-a + b = 40 . . . . . . . . . . Bob earned 40 more than Alan
2a - c = 0 . . . . . . . . . . . Charles earned twice as much as Alan
Adding the first and third equations, we get ...
(a + b + c) + (2a - c) = (480) + (0)
3a + b = 480
Subtracting the second equation gives ...
(3a +b) - (-a +b) = (480) -(40)
4a = 440 . . . . . . . . simplify
a = 110 . . . . . . . . . . divide by the coefficient of a
Alan earned $110.
_____
<em>Check</em>
Bob earned $40 more, so $150. Charles earned twice as much, so $220.
The total is then $110 +150 +220 = $480 . . . . as required
Answer: (a) 0.006
(b) 0.027
Step-by-step explanation:
Given : P(AA) = 0.3 and P(AAA) = 0.70
Let event that a bulb is defective be denoted by D and not defective be D';
Conditional probabilities given are :
P(D/AA) = 0.02 and P(D/AAA) = 0.03
Thus P(D'/AA) = 1 - 0.02 = 0.98
and P(D'/AAA) = 1 - 0.03 = 0.97
(a) P(bulb from AA and defective) = P ( AA and D)
= P(AA) x P(D/AA)
= 0.3 x 0.02 = 0.006
(b) P(Defective) = P(from AA and defective) + P( from AAA and defective)
= P(AA) x P(D/AA) + P(AAA) x P(D/AAA)
= 0.3(0.02) + 0.70(0.03)
= 0.027
The first equation can be simplified down to 3 and -\frac{3}{2}[/tex]. Therefore, ">" is correct.
The second equation can be simplified down to 12 and 6.25. Therefore, "<" is incorrect. It should be ">".
Answer:
82^o
Step-by-step explanation:
74 + 24 = 98
180 - 98 = 82^o
Hope it helps!