Here is a list of the odd number paired
1+3, 1+5, !+7, and !+9 (there are 4 unique sums - 4, 6,8 and 10)
3+5, 3+7, 3+9 (notice I did not pair 3 with 1 and the the only new sum is 12)
5+7, 5+9 (the only new sum is 14)
7+9 (16 is a new sum)
The sums (no repeats) are 4,6,8,10,12,14 and 16 for a total of seven numbers.
I think -0.5
3-5= -2
-2x.25= -0.5
<h3>
Answer: 5 - 4i (choice A)</h3>
===================================================
Work Shown:
x = the other number
(5+4i)*x = 41
x = 41/(5+4i)
x = 41*(5-4i)/( (5+4i)*(5-4i) ) ..... see note below
x = 41*(5-4i)/( 41 )
x = (41/41)*(5-4i)
x = 5 - 4i
As a way to check, (5+4i)*(5-4i) = 5^2+4^2 = 25+16 = 41
The rule used is (a-bi)(a+bi) = a^2 + b^2
-----------
Note: I multiplied top and bottom by (5-4i) to get rid of the imaginary term in the denominator.
Like all problems that involve images within the question, we should definitely try to draw this out. In the picture above, I have done this.
Now, we can see that this is just a simple proportion problem. For every 2.5 cm of height of the flower, we are 2 cm from the opening, or aperture. For every 20 cm of height, how far are we? We can set up the problem like this:
20 ............2.5
-------- = ---------
...x ............. 2
where x is the unknown distance to the aperture from the flower. Now, we just need to get x by itself. A typical way of solving something like this is by doing "butterfly multiplication" which is really just a shortcut haha. Anyway, I can rewrite that equation ^ as:
20×2 = 2.5 × x
Then, to solve for x, we would divide both sides by 2.5. (If you don't know why that is, please let me know and I'll elaborate).
We would then have:
20×2
------- = x
2.5
Which then simplifies to:
x = 16
Try using the same logic for your second question, and if you get stuck, I'd be happy to help! please let me know if any of this doesn't make sense. :)
Answer: OPTION D.
Step-by-step explanation:
The vertex form of a quadratic function is:

Where (h, k) is the vertex of the parabola and "a" is the coefficient of the squared in the parabola's equation.
We know that the vertex of this parabola is at (5,5) and we also know that when the x-value is 6, the y-value is -1.
Then we can substitute values into
and solve for "a". This is: