A distribution of probabilities for random outcomes of bivariate or dichotomous random variables is called (A) binomial probability distribution.
<h3>
What is a binomial probability distribution?</h3>
- The binomial distribution with parameters n and p in probability theory and statistics is the discrete probability distribution of the number of successes in a succession of n separate experiments, each asking a yes-no question and each with its own Boolean-valued outcome: success or failure.
- The binomial distribution is widely used to describe the number of successes in a sample of size n selected from a population of size N with replacement.
- If the sampling is done without replacement, the draws are not independent, and the resulting distribution is hypergeometric rather than binomial.
- Binomial probability distribution refers to a distribution of probabilities for random outcomes of bivariate or dichotomous random variables.
As the description itself says, binomial probability distribution refers to a distribution of probabilities for random outcomes of bivariate or dichotomous random variables.
Therefore, a distribution of probabilities for random outcomes of bivariate or dichotomous random variables is called (A) binomial probability distribution.
Know more about binomial probability distribution here:
brainly.com/question/9325204
#SPJ4
Complete question:
A distribution of probabilities for random outcomes of bivariate or dichotomous random variables is called a ______.
Group of answer choices
(A) binomial probability distribution
(B) distribution of expected values
(C) random variable distribution
(D) mathematical expectation
Answer: 
Step-by-step explanation:
Transformation rule for dilation:
, where k = scale factor
Given : Scale factor = 
Parallelogram JKLM has vertices J(-1, 6), K(0, 9), L(6, −3), and M(3, −3)
Vertices after dilation:




Hence, the coordinates of the image if the parallelogram = 
The final price is the cost plus the tax.
Since we know the tax and a percent, we can write this as
T = C(1+r)
T = what Graham paid = $87.45
C = cost before tax
r = tax rate expressed as a decimal = .40
Plugging in what we know
87.45 = C (1+.4)
87.45 = C(1.4)
Divide both sides by 1.4
C = $62.46
use the distributive property
combine alike terms
add the negative number to the other side
combine alike terms
then divide on both sides to get the variable by itself