2(x+7)3X
I think... look it up though to be sure
Answer:
Proved
Step-by-step explanation:
From the given parameters, we have:
i.e. the length of each security numbers
i.e. 2 security numbers
Required
In 513 security numbers, 2 must have matching zeros
To do this, we make use of Pigeonhole principle.
First, we calculate the number of all security numbers not having matching zeros.
Each of the 9 digits can be selected in 2 ways.
2 ways implies that each digit is either 0 or not
So, total selection is:


Apply Pigeonhole principle
The principle states that: suppose there are n items in m containers, where
, then there is at least one container that contains more than 1 item.
This means that if there are 512 security number without matching zeros, then there is 1 (i.e. 512 + 1) with matching zeros.

The correct answer is C.
You can tell this by factoring the equation to get the zeros. To start, pull out the greatest common factor.
f(x) = x^4 + x^3 - 2x^2
Since each term has at least x^2, we can factor it out.
f(x) = x^2(x^2 + x - 2)
Now we can factor the inside by looking for factors of the constant, which is 2, that add up to the coefficient of x. 2 and -1 both add up to 1 and multiply to -2. So, we place these two numbers in parenthesis with an x.
f(x) = x^2(x + 2)(x - 1)
Now we can also separate the x^2 into 2 x's.
f(x) = (x)(x)(x + 2)(x - 1)
To find the zeros, we need to set them all equal to 0
x = 0
x = 0
x + 2 = 0
x = -2
x - 1 = 0
x = 1
Since there are two 0's, we know the graph just touches there. Since there are 1 of the other two numbers, we know that it crosses there.
Answer:
Awnser is 6
Step-by-step explanation:
Answer:
The zeros of the function are;
x = 0 and x = 1
Step-by-step explanation:
The zeroes of the function simply imply that we find the values of x for which the corresponding value of y is 0.
We let y be 0 in the given equation;
y = x^3 - 2x^2 + x
x^3 - 2x^2 + x = 0
We factor out x since x appears in each term on the Left Hand Side;
x ( x^2 - 2x + 1) = 0
This implies that either;
x = 0 or
x^2 - 2x + 1 = 0
We can factorize the equation on the Left Hand Side by determining two numbers whose product is 1 and whose sum is -2. The two numbers by trial and error are found to be -1 and -1. We then replace the middle term by these two numbers;
x^2 -x -x +1 = 0
x(x-1) -1(x-1) = 0
(x-1)(x-1) = 0
x-1 = 0
x = 1
Therefore, the zeros of the function are;
x = 0 and x = 1
The graph of the function is as shown in the attachment below;