5.5.ooooooooooooooooooooooooooooo1111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222333333333333333333333333333333333333333333344444444444444444444444444444444444444444444445555555555555555555555555555555555555555556666666666666666666666666666666666666777777777777777777777777777777777777788888888888888888889999999999999999999999999999999999999999999999999999999999999999999999999999999999
Answer:
C
Step-by-step explanation:
A and B are not straight lines, so they are not linear functions.
C and D are straight lines, so they are linear. However, D fails the vertical line test, so it is not a function.
Answer:
Attached please find response.
Step-by-step explanation:
We wish to find the area between the curves 2x+y2=8 and y=x.
Substituting y for x in the equation 2x+y2=8 yields
2y+y2y2+2y−8(y+4)(y−2)=8=0=0
so the line y=x intersects the parabola 2x+y2=8 at the points (−4,−4) and (2,2). Solving the equation 2x+y2=8 for x yields
x=4−12y2
From sketching the graphs of the parabola and the line, we see that the x-values on the parabola are at least those on the line when −4≤y≤2.