If you would like to solve the equation 10 * x - 12 = 48 - 2 * x, you can calculate this using the following steps:
10 * x - 12 = 48 - 2 * x
10 * x + 2 * x = 48 + 12
12 * x = 60 /12
x = 60 / 12
x = 5
The correct result is 5.
11+5=16 3x2= 6 8x1= 8 so add it together, 16 + 6 + 8 = 30.
Answer:
mhhh
Step-by-step explanation:
Check the picture below.
now, let's keep in mind that, the vertex is half-way between the focus point and the directrix, it's a "p" distance from each other.
since this horizontal parabola is opening to the left-hand-side, "p" is negative, notice in the picture, "p" is 2 units, and since it's negative, p = -2.
its vertex is half-way between those two guys, so that puts the vertex at (-5, 3)
![\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ 4p(y- k)=(x- h)^2 \end{array} \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-5\\ k=7\\ p=-2 \end{cases}\implies 4(-2)[x-(-5)]=[y-7]^2 \\\\\\ -8(x+5)=(y-7)^2\implies x+5=\cfrac{(y-7)^2}{-8}\implies \boxed{x=-\cfrac{1}{8}(y-7)^2-5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cend%7Barray%7D%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20vertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-5%5C%5C%20k%3D7%5C%5C%20p%3D-2%20%5Cend%7Bcases%7D%5Cimplies%204%28-2%29%5Bx-%28-5%29%5D%3D%5By-7%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-8%28x%2B5%29%3D%28y-7%29%5E2%5Cimplies%20x%2B5%3D%5Ccfrac%7B%28y-7%29%5E2%7D%7B-8%7D%5Cimplies%20%5Cboxed%7Bx%3D-%5Ccfrac%7B1%7D%7B8%7D%28y-7%29%5E2-5%7D)
Answer:
NO
Step-by-step explanation:
Let h(t) represent the distance the pack is located above the ground at time t. Then h(t) = 20 ft - 16t^2 ft. Notice how h = 20 ft (the initial height) and that it decreases as t increases.
How long does it take for the pack tohit the ground? Set h(t) = 0 and solve for t:
0 ft = 20 ft - 16t^2 ft yields 16t^2 ft = 20, or t^2 ft = 20/16, which is greater than 1. So the question "Will the backpack hit the ground in 1 second" is answered by NO.