Answer:
False
Step-by-step explanation:
an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions.
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em>
The value is

or

, since it is in the tenths place.
Answer:
This is always ''interesting'' If you see an absolute value, you always need to deal with when it is zero:
(x-4)=0 ===> x=4,
so that now you have to plot 2 functions!
For x<= 4: what's inside the absolute value (x-4) is negative, right?, then let's make it +, by multiplying by -1:
|x-4| = -(x-4)=4-x
Then:
for x<=4, y = -x+4-7 = -x-3
for x=>4, (x-4) is positive, so no changes:
y= x-4-7 = x-11,
Now plot both lines. Pick up some x that are 4 or less, for y = -x-3, and some points that are 4 or greater, for y=x-11
In fact, only two points are necessary to draw a line, right? So if you want to go full speed, choose:
x=4 and x= 3 for y=-x-3
And just x=5 for y=x-11
The reason is that the absolute value is continuous, so x=4 works for both:
x=4===> y=-4-3 = -7
x==4 ====> y = 4-11=-7!
abs() usually have a cusp int he point where it is =0
Step-by-step explanation:
Answer:
Example:
A bag contains 3 black balls and 5 white balls. Paul picks a ball at random from the bag and replaces it back in the bag. He mixes the balls in the bag and then picks another ball at random from the bag.
a) Construct a probability tree of the problem.
b) Calculate the probability that Paul picks:
i) two black balls
ii) a black ball in his second draw
Solution:
tree diagram
a) Check that the probabilities in the last column add up to 1.
b) i) To find the probability of getting two black balls, first locate the B branch and then follow the second B branch. Since these are independent events we can multiply the probability of each branch.
ii) There are two outcomes where the second ball can be black.
Either (B, B) or (W, B)
From the probability tree diagram, we get:
P(second ball black)
= P(B, B) or P(W, B)
= P(B, B) + P(W, B)