Answer:
Mean for a binomial distribution = 374
Standard deviation for a binomial distribution = 12.97
Step-by-step explanation:
We are given a binomial distribution with 680 trials and a probability of success of 0.55.
The above situation can be represented through Binomial distribution;

where, n = number of trials (samples) taken = 680 trials
r = number of success
p = probability of success which in our question is 0.55
So, it means X <em>~ </em>
<em><u>Now, we have to find the mean and standard deviation of the given binomial distribution.</u></em>
- Mean of Binomial Distribution is given by;
E(X) = n
p
So, E(X) = 680
0.55 = 374
- Standard deviation of Binomial Distribution is given by;
S.D.(X) =
=
=
= 12.97
Therefore, Mean and standard deviation for binomial distribution is 374 and 12.97 respectively.
Let

denote the random variable for the weight of a swan. Then each swan in the sample of 36 selected by the farmer can be assigned a weight denoted by

, each independently and identically distributed with distribution

.
You want to find

Note that the left side is 36 times the average of the weights of the swans in the sample, i.e. the probability above is equivalent to

Recall that if

, then the sampling distribution

with

being the size of the sample.
Transforming to the standard normal distribution, you have

so that in this case,

and the probability is equivalent to

Answer:
7/5, y = -3/10
Step-by-step explanation:
Sector area= theta/360 x πr^2
Radius= 24/2= 12
Sector area= 120/360 x π(12)^2
Final answer :
Sector area = 48π
Answer:
x=33.4
Step-by-step explanation: