The answer is 2k^2 - 7k - 4 because 2k x k is 2k^2 and 2k x (-4) is -8k and 1 x k is k and 1 x (-4) is -4. So then you would get 2k^2 - 8k + k - 4 which simplifies to 2k^2 - 7k - 4 which is your answer.
Answer:
x = 1 ±2sqrt(5)
Step-by-step explanation:
2x^2-4x-9=29
Add 9 to each each side
2x^2-4x-9+9=29+9
2x^2-4x=38
Divide by 2
2/2x^2-4/2x=38/8
x^2 -2x =19
Complete the square
x^2 -2x + (-2/2)^2 = 19 +(-2/2)^2
x^2 -2x +1 = 19+1
(x-1)^1=2 = 20
Take the square root of each side
sqrt((x-1)^2) = ±sqrt(20)
x-1 = ±sqrt(20)
Add 1 to each side
x-1+1 = 1 ±sqrt(20)
x = 1 ±sqrt(20)
Simplifying the square root of 20
x = 1 ±sqrt(4)sqrt(5)
x = 1 ±2sqrt(5)
Umm.. I have to see the problems, we might not have the same textbooks so
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
Limit Rule [Variable Direct Substitution Exponential]: 
Limit Property [Multiplied Constant]: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Solve</u>
- Rewrite [Limit Property - Multiplied Constant]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
- Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%5E4%29)
- Simplify:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%2064)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e