Answer:
The upper 20% of the weighs are weights of at least X, which is
, in which
is the standard deviation of all weights and
is the mean.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Upper 20% of weights:
The upper 20% of the weighs are weighs of at least X, which is found when Z has a p-value of 0.8. So X when Z = 0.84. Then
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![0.84 = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=0.84%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![X = 0.84\sigma + \mu](https://tex.z-dn.net/?f=X%20%3D%200.84%5Csigma%20%2B%20%5Cmu)
The upper 20% of the weighs are weights of at least X, which is
, in which
is the standard deviation of all weights and
is the mean.
Answer:
180 out of 300
Step-by-step explanation:
Basically,
300÷120=2.5
Thereof,
72×2.5=180.
<em>Hope this helps!</em>
<em>tag </em><em>brainliest</em><em> </em><em>please.</em><em>.</em><em>.</em>
Is it 4 2/3? if it is then... 1) 14/3 2) 28/6 3) 42/9
Answer:
fourth option
Step-by-step explanation:
Given
3x < - 9 ( divide both sides by 3 )
x < - 3
solution set is { x | x < - 3 }
Answer:
the write answer to your question is tan 25 degree