Answer: f 1 2 3 4 5 6
================
€ 7
€ 8
Step-by-step explanation:
The string is assumed to be massless so the tension is the sting above the 12.0 N block has the same magnitude to the horizontal tension pulling to the right of the 20.0 N block. Thus,
1.22 a = 12.0 - T (eqn 1)
and for the 20.0 N block:
2.04 a = T - 20.0 x 0.325 (using µ(k) for the coefficient of friction)
2.04 a = T - 6.5 (eqn 2)
[eqn 1] + [eqn 2] → 3.26 a = 5.5
a = 1.69 m/s²
Subs a = 1.69 into [eqn 2] → 2.04 x 1.69 = T - 6.5
T = 9.95 N
Now want the resultant force acting on the 20.0 N block:
Resultant force acting on the 20.0 N block = 9.95 - 20.0 x 0.325 = 3.45 N
<span>Units have to be consistent ... so have to convert 75.0 cm to m: </span>
75.0 cm = 75.0 cm x [1 m / 100 cm] = 0.750 m
<span>work done on the 20.0 N block = 3.45 x 0.750 = 2.59 J</span>
Answer:

Step-by-step explanation:
<u>Geometric Sequences</u>
There are two basic types of sequences: arithmetic and geometric. The arithmetic sequences can be recognized because each term is found as the previous term plus a fixed number called the common difference.
In the geometric sequences, each term is found by multiplying (or dividing) the previous term by a fixed number, called the common ratio.
We are given the sequence:
112, -28, 7, ...
It's easy to find out this is a geometric sequence because the signs of the terms are alternating. If it was an arithmetic sequence, the third term should be negative like the second term.
Let's find the common ratio by dividing each term by the previous term:

Testing with the third term:

Now we're sure it's a geometric sequence with r=-1/4, we use the general equation for the nth term:


Answer:
$7 per hour
Step-by-step explanation:
just divide 70 from 10
(12 + x) X 4.
EXPLANATION
Replace twelve with 12.
Replace the sum with a +
Replace a number with a variable
replace four times with X 4.
Have a gud day