For this case we have that the expression in its exact form is the same, that is:

If it is expressed in decimal form we have:

If we want equivalent expressions, we must first mention the following property of powers and roots:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
Then, we can rewrite the expression as:

Answer:

Answer:
look at the angles. they all ad up to 180 degrees devide that by 9, and there you go!
Step-by-step explanation:
Answer:
i don't know nothing about that
Answer:
The height of the triangle could be found by the <u>Pythagoras theorem</u>, where the result is, with the data of the exercise:
- <u>Height of the triangle = 10.392</u>
And the area of the triangle is:
- <u>Area of the triangle = 31.176 units^2</u>
Step-by-step explanation:
When you have two measurements of a triangle, as the case in the picture, you can find the third with the <em>Pythagoras theorem</em>, which is:
- <u>(opposite leg)^2 + (adjacent leg)^2 = hypotenuse^2</u>
As you can see in the picture, the measurement of the hypotenuse is 12, and the opposite leg could be 6, for this reason, we're gonna clear the adjacent leg of the formula above:
- (opposite leg)^2 + (adjacent leg)^2 = hypotenuse^2
- (adjacent leg)^2 = hypotenuse^2 - (opposite leg)^2
Now, we can replace the values in the formula obtained:
- (adjacent leg)^2 = hypotenuse^2 - (opposite leg)^2
- (adjacent leg)^2 = 12^2 - 6^2
- (adjacent leg)^2 = 144 - 36
- (adjacent leg)^2 = 108
Now, as we just need the adjacent leg, we take the square root of both sides:
- adjacent leg =

- <u>adjacent leg = 10.392 approximately</u>.
Now, with these data, we can find the area of the triangle with the next formula:
- Area of a triangle = (base * height) / 2
- And we replace the measurements:
- Area of a triangle = (6 * 10.392) / 2
- <u>Area of a triangle = 31.176</u>
As the image does not contain units, it would be simply this number, however, <em>you should know that the area units are usually given squared, for example: in^2 or ft^2</em>.
For this case we have the following function:
f (x) = (1/6) ^ x
We must evaluate the function for x = 3
We have then:
f (3) = (1/6) ^ 3
Rewriting:
f (3) = (1/216)
Answer:
The function evaluated at x = 3 is:
f (3) = (1/216)
option C