Answer:
The miRNAs act as post-transcriptional silencers, as they are similar to specific mRNAs and regulate their stability and translation. They are small endogenous non-coding ribonucleic acid (RNA) molecules, with about 22 nucleotides, which act as regulators of gene expression in plants and animals, at the post-transcriptional level through the cleavage of a target messenger RNA (mRNA) or repression of translation.
In general, most miRNA genes are transcribed by RNA polymerase II in the nucleus in primary miRNAs (pri-miRNAs). Individually, a pri-miRNA can produce a single miRNA or contain groups of two or more miRNAs that are processed from a common primary transcript. These long pri-miRNA are cleaved by a complex comprising the double-stranded RNAse III enzyme (DROSHA) and its essential cofactor, the binding protein DGCR8 (DiGeorge Syndrome Critical Region 8 protein) in mammals. DROSHA contains two domains of RNAse III, each of which cleaves a strand of the RNA resulting in the precursor microRNA (pre-miRNA) with about 70 base pairs, which contains a double-stranded stretch and a single-stranded loop, forming a structure in clamp. The pre-miRNA is exported to the cytoplasm by the protein exportin-5 (XPO-5), where it is cleaved by DICER1, an RNAse III that assesses the 3 'and 5' ends of the pre-miRNA, generating a mature miRNA with about 22 nucleotides. The processing of pre-miRNA by Dicer promotes the unfolding of the RNA duplex in the form of a clamp. The position in the formation of the clamp can also influence the choice of tape.
Explanation:
This is possible because of the length of the protein. It is always possible to add more amino acids and synthesize new protein and every new addition increases the number of possibilities drastically.
Answer:
They pick up oxygen from the lungs and drop off oxygen to the cells through the capillaries
Answer:
The simulation only shows how a population can change overtime in response to the changes in the environment. During the industrial revolution, one particular phenotype of moths had an advantage over the other and hence, was subjected to natural selection. What this simulation does not tell us is the causality and correlation aspect of the change that occurs in the moths. Correlation does not equal causation, and the simulation does not shed any light on these variables in this case.
Explanation:
Hope that answers the question, have a great day!