Answer:
Each of the legs of isosceles right triangle is 5![\sqrt{3}](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D)
Step-by-step explanation:
Watch the attached figure for the isosceles right angled triangle
Looking at the figure we see that AB=5√6 and BC=CA
According to the Pythagorean theorem the square of the hypotenuse is equal to the sum of the squares of the other two sides of a right triangle.
1) Applying the Pythagorean theorem to the isosceles right triangle, we have
![BC^{2} + CA^{2} = AB^{2}](https://tex.z-dn.net/?f=BC%5E%7B2%7D%20%2B%20CA%5E%7B2%7D%20%3D%20AB%5E%7B2%7D)
2) Let BC=a and CA=a as they both are equal
So,
![a^{2} + a^{2} = (5\sqrt{6} )^{2}](https://tex.z-dn.net/?f=a%5E%7B2%7D%20%2B%20a%5E%7B2%7D%20%3D%20%285%5Csqrt%7B6%7D%20%29%5E%7B2%7D)
=> ![2a^{2} = (5\sqrt{6} )(5\sqrt{6} )](https://tex.z-dn.net/?f=2a%5E%7B2%7D%20%3D%20%285%5Csqrt%7B6%7D%20%29%285%5Csqrt%7B6%7D%20%29)
=> ![2a^{2} = 5*5*\sqrt{6}*\sqrt{6}](https://tex.z-dn.net/?f=2a%5E%7B2%7D%20%3D%205%2A5%2A%5Csqrt%7B6%7D%2A%5Csqrt%7B6%7D)
=>
(since √6*√6 = (√6)²= 6)
=> ![2a^{2} = 150](https://tex.z-dn.net/?f=2a%5E%7B2%7D%20%3D%20150)
3) Dividing both sides by 2, we get
![\frac{2a^{2} }{2} =\frac{150}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B2a%5E%7B2%7D%20%7D%7B2%7D%20%3D%5Cfrac%7B150%7D%7B2%7D)
4) Cancelling out the 2's on the left, we get
= 75
5) Taking the square root on both sides, we have
![\sqrt{a^{2}} = \sqrt{75}](https://tex.z-dn.net/?f=%5Csqrt%7Ba%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B75%7D)
=> a = 5![\sqrt{3}](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D)
So,
Each of the legs of isosceles right triangle is 5![\sqrt{3}](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D)