Answer:
see explanation
Step-by-step explanation:
Under a rotation about the origin of 90°
a point (x, y ) → (- y, x ), thus
A(2, 2 ) → A'(- 2, 2 )
B(2, 4 ) → B'(- 4, 2 )
C(4, 6 ) → C'(- 6, 4 )
D(6, 4 ) → D'(- 4, 6 )
E(6, 2 ) → E'(- 2, 6 )
The standard form of the equation of a circle is (x-h)^2 + (y-k)^2 = r^2, where (h,k) is the center of the circle, (x,y) is a point of the circle, and r is the length of the radius of the circle. When the equation of a circle is written, h,k, and r are numbers, while x and y are still variables. (x-2)^2 + (y-k)^2 = 16 is an example of a circle. The problem gives us two of the three things that a circle has, a point (5,9) and the center (-2,3). We need to find the radius in order to write the equation. We substitute -2 for h, 3 for k, 5 for x, and 9 for y to get (5 - (-2))^2 + (9 - 3)^2 = r^2 We simplify: 49 + 36 = r^2, r^2 = 85. We only need to know r^2 because the equation of a circle has r^2. We now have all the information to write the equation of a circle. (x + 2)^2 + (y - 3)^2 = 85.
1) Would be c+15 because you can combine 19-4
2) Would be m+2 because you can combine 12-10
I'm assuming you mean
, not
, like your prompt suggests.
First, let's figure out what rule we can use. A likely noticeable one is the Power Rule, which says the following:
![\dfrac{d}{dx} [u^a] = a(u)^{a-1} du](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%7D%7Bdx%7D%20%5Bu%5Ea%5D%20%3D%20a%28u%29%5E%7Ba-1%7D%20du)
Applying this, we can solve for the derivative:

While you can simplify the expression to your liking, I believe that this form is not overly complex and will thus leave it as is.
Thus, our answer is:

7 1/2 / 6 = 1.25 pounds
Candy weight in each box = 1 1/4 pounds