Answer:
1. 192.0 g/mol.
2. 84.0 g/mol.
Explanation:
- <em>The molar mass is the mass of all the atoms in a molecule in grams per mole.</em>
- <em>To calculate the molar mass of a molecule, we first obtain the atomic weights from the individual elements in a periodic table. We then count the number of atoms and multiply it by the individual atomic masses.</em>
<em></em>
<em>1. Molar mass of citric acid (C₆H₈O₇):</em>
<em>Molar mass of C₆H₈O₇ = 6(atomic mass of C) + 8(atomic mass of H) + 7(atomic mass of O)</em> = 6(12.0 g/mol) + 8(1.0 g/mol) + 7(16.0 g/mol) = <em>192.0 g/mol.</em>
<em>2. Molar mass of baking soda (NaHCO₃):</em>
<em>Molar mass of NaHCO₃ = (atomic mass of Na) + (atomic mass of H) + (atomic mass of C) + 3(atomic mass of O) </em>= (23.0 g/mol) + (1.0 g/mol) + (12.0 g/mol) + 3(16.0 g/mol) = <em>84.0 g/mol.</em>
Answer:
498 kj/mol
Explanation:
Chemical reactions occur as a result of bond breaking and bond formation.
The bonds in reactants are broken and atoms are rearranged to form new bonds.
During bond breaking energy is absorbed to break the bonds of reactants while bond formation involves the release of energy during the formation of new bonds.
In our case;
In 1 mole of the Oxygen molecule, there is one O=O bond
Energy absorbed to break O=O is 498 kJ/mol
Therefore, the ΔH required to break all the bonds in one mole of Oxygen(O₂) molecules is 498kJ/mol.
Note that, bond breaking is endothermic since energy is absorbed from the surroundings.
mark brainliest pls
Answer:
<h2>0.75 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.75 g/mL</h3>
Hope this helps you
<span>vibration of particles decreases as the temperature decreases It also decreases during phase change but temperature does not</span>
Air is mainly composed of N2 (78%), O2 (21%) and other trace gases. Now, the total pressure of air is the sum of the partial pressures of the constituent gases. The partial pressure of each gas, for example say O2, can be expressed as:
p(O2) = mole fraction of O2 * P(total, air) ----(1)
Thus, the partial pressure is directly proportional to the total pressure. If we consider a sealed container then, as the temperature of air increases so will its pressure. Based on equation (1) an increase in the pressure of air should also increase the partial pressure of oxygen.