The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
Answer: 4
Explanation:
Principle Quantum Numbers: This quantum number describes the size of the orbital. It is represented by n.
Azimuthal Quantum Number: This quantum number describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number: This quantum number describes the orientation of the orbitals. It is represented as
. The value of this quantum number ranges from
. When l = 2, the value of
will be -2, -1, 0, +1, +2.
Given : a f subshell, thus l = 3 , Thus the subshells present would be 3, 2, 1, 0 and thus n will have a value of 4.
Also electrons give are 32.
The formula for number of electrons is
.


Thus principal quantum no will be n= 4.
Answer:
I think option A is right answer
B I hope it’s right I don’t really help a lot but yeah lol
Answer:
Increase in height from the ground.
Explanation:
Potential energy =mass×acceleration due to gravity×height.
P.E= mgh