Jesse, to answer this, we need to see the graph. I'd help if I could! You can message me if you post it! :D
Answer:
C
Step-by-step explanation:
12/28 is equal to 3/7 (divide both the numerator and the denominator by the highest common factor).
To prove this inequality we need to consider three cases. We need to see that the equation is symmetric and that switching the variables x and y does not change the equation.
Case 1: x >= 1, y >= 1
It is obvious that
x^y >= 1, y^x >= 1
x^y + y^x >= 2 > 1
x^y + y^x > 1
Case 2: x >= 1, 0 < y < 1
Considering the following sub-cases:
- x = 1, x^y = 1
- x > 1,
Let x = 1 + n, where n > 0
x^y = (1 + n)^y = f_n(y)
By Taylor Expansion of f_e(y) around y = 0,
x^y = f_n(0) + f_n'(0)/1!*y + f_n''(0)/2!*y^2 + ...
= 1 + ln(1 + n)/1!*y + ln(1 + n)^2/2!*y^2 + ...
Since ln(1 + n) > 0,
x^y > 1
Thus, we can say that x^y >= 1, and since y^x > 0.
x^y + y^x > 1
By symmetry, 0 < x < 1, y >= 1, also yields the same.
Case 3: 0 < x, y < 1
We can prove this case by fixing one variable at a time and by invoking symmetry to prove the relation.
Fixing the variable y, we can set the expression as a function,
f(x) = x^y + y^x
f'(x) = y*x^(y-1) + y^x*ln y
For all x > 0 and y > 0, it is obvious that
f'(x) > 0.
Hence, the function f(x) is increasing and hence the function f(x) would be at its minimum when x -> 0+ (this means close to zero but always greater than zero).
lim x->0+ f(x) = 0^y + y^0 = 0 + 1 = 1
Thus, this tells us that
f(x) > 1.
Fixing variable y, by symmetry also yields the same result: f(x) > 1.
Hence, when x and y are varying, f(x) > 1 must also hold true.
Thus, x^y + y^x > 1.
We have exhausted all the possible cases and shown that the relation holds true for all cases. Therefore,
<span> x^y + y^x > 1
----------------------------------------------------
I have to give credit to my colleague, Mikhael Glen Lataza for the wonderful solution.
I hope it has come to your help.
</span>
I got 2/1= 2
You just divide and reduce