Your answer to the first one is incorrect.
We can cut the plan into two figures, a rectangle with side lengths of 4 cm and 5 cm and a rectangle with side lengths of 1 and 2 cm.
Perimeter of a Rectangle:
P = 2(l + w)
P = 2(4 + 5)
P = 2(9)
P = 18
Perimeter of a Rectangle:
P = 2(l + w)
P = 2(2 + 1)
P = 2(3)
P = 6
Add up the perimeters:
18 + 6 = 24
So the total perimeter is 24.
For the 2nd one, your answer is also incorrect.
We multiply 5 to the perimeter of the plans:
5 * 24 = 120
Not sure what the third one is asking.
For the fourth one we just multiply 'k' to the perimeter:
24 * k = 24k
Answer:
are you talking about links?
Step-by-step explanation:
yeah they can get annoying
32,347,345.5 people died in the year 200
To calculate the distance between two points on the coordinate system you have to use the following formula:
![d=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D)
Where
d represents the distance between both points.
(x₁,y₁) are the coordinates of one of the points.
(x₂,y₂) are the coordinates of the second point.
To determine the length of CD, the first step is to determine the coordinates of both endpoints from the graph
C(2,-1)
D(-1,-2)
Replace the coordinates on the formula using C(2,-1) as (x₁,y₁) and D(-1,-2) as (x₂,y₂)
![\begin{gathered} d_{CD}=\sqrt[]{(2-(-1))^2+((-1)-(-2))}^2 \\ d_{CD}=\sqrt[]{(2+1)^2+(-1+2)^2} \\ d_{CD}=\sqrt[]{3^2+1^2} \\ d_{CD}=\sqrt[]{9+1} \\ d_{CD}=\sqrt[]{10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B%282-%28-1%29%29%5E2%2B%28%28-1%29-%28-2%29%29%7D%5E2%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B%282%2B1%29%5E2%2B%28-1%2B2%29%5E2%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B3%5E2%2B1%5E2%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B9%2B1%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B10%7D%20%5Cend%7Bgathered%7D)
The length of CD is √10 units ≈ 3.16 units
Answer:
x = 3
Step-by-step explanation:

56 is not equal to 30