Answer:
3 1/3
Step-by-step explanation:
2 + (-2/3)² ÷ 1/3
2 + 4/9 ÷ 1/3
2 + 4/9 × 3/1
2 + 12/9 = 2 + 4/3 = 2 + 1 1/3
= 3 1/3
Answer:
The sample size to obtain the desired margin of error is 160.
Step-by-step explanation:
The Margin of Error is given as

Rearranging this equation in terms of n gives
![n=\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2](https://tex.z-dn.net/?f=n%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2)
Now the Margin of Error is reduced by 2 so the new M_2 is given as M/2 so the value of n_2 is calculated as
![n_2=\left[z_{crit}\times \dfrac{\sigma}{M_2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{\sigma}{M/2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{2\sigma}{M}\right]^2\\n_2=2^2\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4n](https://tex.z-dn.net/?f=n_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM_2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%2F2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B2%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D2%5E2%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4n)
As n is given as 40 so the new sample size is given as

So the sample size to obtain the desired margin of error is 160.
OK, a triangle first of all needs to have a certain condition satisfied. The length of one side of a triangle can not equal the length of 2 sides combined. So in a triangle a + b = c, a + b can not be less than c (a + b <span>≮ c</span>). Therefore, there are only a few possibilities that will work here. Let's find them:
16, 19, 43; no
16, 19, 50; no
16, 43, 50; yes
19, 43, 50; yes
Since only 2 out of 4 form triangles, there is a 50% chance you'll pick the right segments to form a triangle.
Answer: Irrational because cannot be turned into fractions
Step-by-step explanation: