Since m < 1 and m < 2 are complementary angles wherein the measure of their angles add up to 90°, we can establish the following equation:
m < 1 + m < 2 = 90°
x° + 48° + 2x° = 90°
Combine like terms:
48° + 3x° = 90°
Subtract 48° from both sides:
48° - 48° + 3x° = 90° - 48°
3x = 42°
Divide both sides by 3 to solve for x:
3x/3 = 42/3
x = 14°
Plug in the value of x into the equation to fins m< 1 and m < 2:
m < 1 + m < 2 = 90°
(14° + 48°) + 2(14)° = 90°
62° + 28° = 90°
90° = 90° (True statement)
Therefore:
m < 1 = 62°
m < 2 = 28°
Answer:
Height of cone (h) = 14.8 in (Approx)
Step-by-step explanation:
Given:
Radius of cone (r) = 6 in
Slant height (l) = 16 in
Find:
Height of cone (h) = ?
Computation:
Height of cone (h) = √ l² - r²
Height of cone (h) = √ 16² - 6²
Height of cone (h) = √ 256 - 36
Height of cone (h) = √220
Height of cone (h) = 14.832
Height of cone (h) = 14.8 in (Approx)
Answer:
12.000
Step-by-step explanation:
40000x6= 240000/100= 2400x5
Answer:
C
Step-by-step explanation:
We have: (I rewrote the function)

Given that:

The first iterate will be:

The second iterate will be:

And the third iterate will be:

Hence, our answer is C.