We can start from the given line's coefficients and translate the line from the origin to the given point. 4(x -(-2)) -(y -3) = 0 4x +8 -y +3 = 0
The equation of the desired line is ... 4x -y = -11
_____ For standard form line ax+by=c, any parallel line will have only a different value of c. For c=0, the line goes through the origin (0, 0). To make it go through point (h, k) we can write it as a(x-h) +b(y-k) = 0 which is completely equivalent to ax +by = ah +bk
The length is about 28 more than three times the width. Denoted as (a) width, and as (b) the length. Then move on to lay the system of equations, as done below:
The short side has a length of 10 cm, and 58 cm long.
since the line is parallel it has the same slope so we have y = 3x + b. plug in the point (2,10) to get 10 = 3*2 + b, so b=4. so the equation is y = 3x +4