A= l times w. A=14628 and w=12 so length equals 1219 millimeters
The answer is 745. Doesn't math make sense ?
To prove two sets are equal, you have to show they are both subsets of one another.
• <em>X</em> ∩ (⋃ ) = ⋃ {<em>X</em> ∩ <em>S</em> | <em>S</em> ∈ }
Let <em>x</em> ∈ <em>X</em> ∩ (⋃ ). Then <em>x</em> ∈ <em>X</em> and <em>x</em> ∈ ⋃ . The latter means that <em>x</em> ∈ <em>S</em> for an arbitrary set <em>S</em> ∈ . So <em>x</em> ∈ <em>X</em> and <em>x</em> ∈ <em>S</em>, meaning <em>x</em> ∈ <em>X</em> ∩ <em>S</em>. That is enough to say that <em>x</em> ∈ ⋃ {<em>X</em> ∩ <em>S</em> | <em>S</em> ∈ }. So <em>X</em> ∩ (⋃ ) ⊆ ⋃ {<em>X</em> ∩ <em>S</em> | <em>S</em> ∈ }.
For the other direction, the proof is essentially the reverse. Let <em>x</em> ∈ ⋃ {<em>X</em> ∩ <em>S</em> | <em>S</em> ∈ }. Then <em>x</em> ∈ <em>X</em> ∩ <em>S</em> for some <em>S</em> ∈ , so that <em>x</em> ∈ <em>X</em> and <em>x</em> ∈ <em>S</em>. Because <em>x</em> ∈ <em>S</em> and <em>S</em> ∈ , we have that <em>x</em> ∈ ⋃ , and so <em>x</em> ∈ <em>X</em> ∩ (⋃ ). So ⋃ {<em>X</em> ∩ <em>S</em> | <em>S</em> ∈ } ⊆ <em>X</em> ∩ (⋃ ).
QED
• <em>X</em> ∪ (⋂ ) = ⋂ {<em>X</em> ∪ <em>S</em> | <em>S</em> ∈ }
Let <em>x</em> ∈ <em>X</em> ∪ (⋂ ). Then <em>x</em> ∈ <em>X</em> or <em>x</em> ∈ ⋂ . If <em>x</em> ∈ <em>X</em>, we're done because that would guarantee <em>x</em> ∈ <em>X</em> ∪ <em>S</em> for any set <em>S</em>, and hence <em>x</em> would belong to the intersection. If <em>x</em> ∈ ⋂ , then <em>x</em> ∈ <em>S</em> for all <em>S</em> ∈ , so that <em>x</em> ∈ <em>X</em> ∪ <em>S</em> for all <em>S</em>, and hence <em>x</em> is in the intersection. Therefore <em>X</em> ∪ (⋂ ) ⊆ ⋂ {<em>X</em> ∪ <em>S</em> | <em>S</em> ∈ }.
For the opposite direction, let <em>x</em> ∈ ⋂ {<em>X</em> ∪ <em>S</em> | <em>S</em> ∈ }. Then <em>x </em>∈ <em>X</em> ∪ <em>S</em> for all <em>S</em> ∈ . So <em>x</em> ∈ <em>X</em> or <em>x</em> ∈ <em>S</em> for all <em>S</em>. If <em>x</em> ∈ <em>X</em>, we're done. If <em>x</em> ∈ <em>S</em> for all <em>S</em> ∈ , then <em>x</em> ∈ ⋂ , and we're done. So ⋂ {<em>X</em> ∪ <em>S</em> | <em>S</em> ∈ } ⊆ <em>X</em> ∪ (⋂ ).
QED
From the book "I Got You Babe"
Answer:
a) 0.3585
b) 0.6415
c) 0.07548
Step-by-step explanation:
This is a binomial distribution problem
Binomial distribution function is represented by
P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ
n = total number of sample spaces = 20
x = Number of successes required
p = probability of window frame with minor defect = 0.05
q = probability of window frame with no defect = 1 - 0.05 = 0.95
a) Probability that none of the frames picked will have defects
x = 0
P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ
P(X = 0) = ²⁰C₀ 0.05⁰ 0.95²⁰⁻⁰ = 0.3585
b) Probability that At least one will need adjustment = P(X ≥ 1) = 1 - P(X < 1) = 1 - P(X = 0) = 1 - 0.3585 = 0.6415
c) Probability that More than two will need adjustment = P(X > 2)
P(X > 2) = 1 - P(X ≤ 2) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)]
So, we evaluate each of that using the binomial distribution formula, slotting in the appropriate variables, and sum it all up.
P(X > 2) = 1 - 0.9245 = 0.07548