1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OleMash [197]
3 years ago
8

What is this????????

Mathematics
1 answer:
lyudmila [28]3 years ago
7 0

Answer:

97°. (54°+ 43°= 97°)

Step-by-step explanation:

As we can see, the whole angle is split into two parts, one 54°, and one 43°.

To find the measure of angle a, we add 54°  and 43°  to get 97° .

54°+ 43°= 97°

Hope it helps!

You might be interested in
I need to know the steps on how to do it
Sergeu [11.5K]
You need help with what problem
4 0
3 years ago
Which is the graph of X^2/9-y^2/4=1
lesantik [10]

Answer:

a.

Step-by-step explanation:

7 0
3 years ago
A random sample of n = 64 observations is drawn from a population with a mean equal to 20 and standard deviation equal to 16. (G
dezoksy [38]

Answer:

a) The mean of a sampling distribution of \\ \overline{x} is \\ \mu_{\overline{x}} = \mu = 20. The standard deviation is \\ \frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{64}}=2.

b) The standard normal z-score corresponding to a value of \\ \overline{x} = 16 is \\ Z = -2.

c) The standard normal z-score corresponding to a value of \\ \overline{x} = 23 is \\ Z = 1.5.

d) The probability \\ P(\overline{x}.

e) The probability \\ P(\overline{x}>23) = 1 - P(Z.

f)  \\ P(16 < \overline{x} < 23) = P(-2 < Z < 1.5) = P(Z.

Step-by-step explanation:

We are dealing here with the concept of <em>a sampling distribution</em>, that is, the distribution of the sample means \\ \overline{x}.

We know that for this kind of distribution we need, at least, that the sample size must be \\ n \geq 30 observations, to establish that:

\\ \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})

In words, the distribution of the sample means follows, approximately, a <em>normal distribution</em> with mean, \mu, and standard deviation (called <em>standard error</em>), \\ \frac{\sigma}{\sqrt{n}}.

The number of observations is n = 64.

We need also to remember that the random variable Z follows a <em>standard normal distribution</em> with \\ \mu = 0 and \\ \sigma = 1.

\\ Z \sim N(0, 1)

The variable Z is

\\ Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} [1]

With all this information, we can solve the questions.

Part a

The mean of a sampling distribution of \\ \overline{x} is the population mean \\ \mu = 20 or \\ \mu_{\overline{x}} = \mu = 20.

The standard deviation is the population standard deviation \\ \sigma = 16 divided by the root square of n, that is, the number of observations of the sample. Thus, \\ \frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{64}}=2.

Part b

We are dealing here with a <em>random sample</em>. The z-score for the sampling distribution of \\ \overline{x} is given by [1]. Then

\\ Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

\\ Z = \frac{16 - 20}{\frac{16}{\sqrt{64}}}

\\ Z = \frac{-4}{\frac{16}{8}}

\\ Z = \frac{-4}{2}

\\ Z = -2

Then, the <em>standard normal z-score</em> corresponding to a value of \\ \overline{x} = 16 is \\ Z = -2.

Part c

We can follow the same procedure as before. Then

\\ Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

\\ Z = \frac{23 - 20}{\frac{16}{\sqrt{64}}}

\\ Z = \frac{3}{\frac{16}{8}}

\\ Z = \frac{3}{2}

\\ Z = 1.5

As a result, the <em>standard normal z-score</em> corresponding to a value of \\ \overline{x} = 23 is \\ Z = 1.5.

Part d

Since we know from [1] that the random variable follows a <em>standard normal distribution</em>, we can consult the <em>cumulative standard normal table</em> for the corresponding \\ \overline{x} already calculated. This table is available in Statistics textbooks and on the Internet. We can also use statistical packages and even spreadsheets or calculators to find this probability.

The corresponding value is Z = -2, that is, it is <em>two standard units</em> <em>below</em> the mean (because of the <em>negative</em> value). Then, consulting the mentioned table, the corresponding cumulative probability for Z = -2 is \\ P(Z.

Therefore, the probability \\ P(\overline{x}.

Part e

We can follow a similar way than the previous step.

\\ P(\overline{x} > 23) = P(Z > 1.5)

For \\ P(Z > 1.5) using the <em>cumulative standard normal table</em>, we can find this probability knowing that

\\ P(Z1.5) = 1

\\ P(Z>1.5) = 1 - P(Z

Thus

\\ P(Z>1.5) = 1 - 0.9332

\\ P(Z>1.5) = 0.0668

Therefore, the probability \\ P(\overline{x}>23) = 1 - P(Z.

Part f

This probability is \\ P(\overline{x} > 16) and \\ P(\overline{x} < 23).

For finding this, we need to subtract the cumulative probabilities for \\ P(\overline{x} < 16) and \\ P(\overline{x} < 23)

Using the previous <em>standardized values</em> for them, we have from <em>Part d</em>:

\\ P(\overline{x}

We know from <em>Part e</em> that

\\ P(\overline{x} > 23) = P(Z>1.5) = 1 - P(Z

\\ P(\overline{x} < 23) = P(Z1.5)

\\ P(\overline{x} < 23) = P(Z

\\ P(\overline{x} < 23) = P(Z

Therefore, \\ P(16 < \overline{x} < 23) = P(-2 < Z < 1.5) = P(Z.

5 0
3 years ago
What is the answer 200 unsquared?
mestny [16]
You mean square root of 200? It's 14.14
7 0
3 years ago
Read 2 more answers
Find a direct relationship between x and y.<br> x = 3t and y = 2t + 7
ikadub [295]

Answer:

y = \frac{2}{3} x + 7

Step-by-step explanation:

Given

x = 3t ( divide both sides by 3 )

\frac{1}{3} x = t

Substitute this value into y = 2t + 7

y = 2 × \frac{1}{3} x + 7 = \frac{2}{3} x + 7

6 0
3 years ago
Other questions:
  • To which graph does the point (8, −2) belong?
    11·2 answers
  • Can someone help me answer this question? I think it is the 2nd option but not sure
    13·1 answer
  • -3+3r=12 can u solve this using algebra??
    14·1 answer
  • Your cell phone plan costs ​$ 34.99 per month plus ​$ 0.17 for each text message you send or receive. You have at most ​$ 42 to
    11·1 answer
  • A tortoise moves forward 15 meters in one hour. It turns around and crawls 10 meters in the
    8·2 answers
  • Determine whether the set of lengths could form a triangle.<br> 5, 2, and 3.
    10·2 answers
  • Is the right angle the small angle in a right triangle
    11·2 answers
  • The quadrilateral ABCD has area of 58 in2 and diagonal AC = 14.5 in. Find the length of diagonal BD if AC ⊥ BD.
    12·1 answer
  • Find the area of square GHIJ shown.
    11·1 answer
  • Please answer soon (45 Points)
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!