<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
Answer:
x = ± 13
Step-by-step explanation:
Given
x² = 169 ( take the square root of both sides )
x = ±
= ± 13
Since 13 × 13 = 169 and - 13× - 13 = 169
<span>6(-3r)=-39+3r
-18r = -39+3r
39 = 18r + 3r
39 = 21r
39/21 = r
13/7 = r
r = 13/7</span>
The questions is asking which one and i say is graph B
Answer:
5x+7
Step-by-step explanation:
Subtract like terms
(8x+9)-(3x+2)
8x-3x=5x
9-2=7
5x+7 should be your answer I believe