The 21st term of the given arithmetic sequence is 83. The nth term of an arithmetic sequence is applied to find the required value where n = 21.
<h3>What is the nth term of an arithmetic series?</h3>
The nth term of an arithmetic sequence is calculated by the formula
aₙ = a + (n - 1) · d
Here the first term is 'a' and the common difference is 'd'.
<h3>Calculation:</h3>
The given sequence is an arithmetic sequence.
3, 7, 11, 15, 19, ....
So, the first term in the sequence is a = 3 and the common difference between the terms of the given sequence is d = 7 - 3 = 4.
Thus, the required 21st term in the sequence is
a₂₁ = 3 + (21 - 1) × 4
⇒ a₂₁ = 3 + 20 × 4
⇒ a₂₁ = 3 + 80
∴ a₂₁ = 83
So, the 21st term in the given arithmetic sequence is 83.
Learn more about the arithmetic sequence here:
brainly.com/question/6561461
#SPJ1
f(x) *g(x) = (x-3)(x+11) = x^2 +11x -3x -33 = x^2 +8x -33
Sorry if its wrong :(
Answer:
Step-by-step explanation:
5y + 6y + 7y = 18y......any numbers that add(or subtract) to equal 18, stick them before the y....
or it could be : 10y + 10y - 2y = 18y or 5y + 10y + 3y or 30y - 20y + 8y....I could go on forever...lol
For my answer, I got -47 1/2