1/2 x 2= 1
1/8 x 2= 1/4
3/8 x 2= 3/4
3/4 x 1/4 = 3/16
3/16 x 1 = 3/16
YOUR ANSWER IS 3/16 dry ingredients
Slope= (y2-y1)/(x2-x1)= (-3-(-1))/(0-4)= -2/-4 =2/4 =1/2
Answer: slope =1/2.
Answer: The answer is D. P(t) = - 16t^2 + 100t / 3.2808
Step-by-step explanation:
Amount earned by Sharon per item sold = $25
Base salary of Sharon per week = $100
Amount that needs to be earned by Sharon per week = $700
Let us assume the number of items sold by Sharon per week = x
Then
100 + 25x = 700
25x = 700 - 100
25x = 600
x = 600/25
= 24
So Sharon needs to sell 24 items to earn a total of $700 per week. I hope you have understood the method of solving such problems.
I'm going to assume the joint density function is

a. In order for
to be a proper probability density function, the integral over its support must be 1.

b. You get the marginal density
by integrating the joint density over all possible values of
:

c. We have

d. We have

and by definition of conditional probability,


e. We can find the expectation of
using the marginal distribution found earlier.
![E[X]=\displaystyle\int_0^1xf_X(x)\,\mathrm dx=\frac67\int_0^1(2x^2+x)\,\mathrm dx=\boxed{\frac57}](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E1xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac67%5Cint_0%5E1%282x%5E2%2Bx%29%5C%2C%5Cmathrm%20dx%3D%5Cboxed%7B%5Cfrac57%7D)
f. This part is cut off, but if you're supposed to find the expectation of
, there are several ways to do so.
- Compute the marginal density of
, then directly compute the expected value.

![\implies E[Y]=\displaystyle\int_0^2yf_Y(y)\,\mathrm dy=\frac87](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac87)
- Compute the conditional density of
given
, then use the law of total expectation.

The law of total expectation says
![E[Y]=E[E[Y\mid X]]](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5BE%5BY%5Cmid%20X%5D%5D)
We have
![E[Y\mid X=x]=\displaystyle\int_0^2yf_{Y\mid X}(y\mid x)\,\mathrm dy=\frac{6x+4}{6x+3}=1+\frac1{6x+3}](https://tex.z-dn.net/?f=E%5BY%5Cmid%20X%3Dx%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_%7BY%5Cmid%20X%7D%28y%5Cmid%20x%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac%7B6x%2B4%7D%7B6x%2B3%7D%3D1%2B%5Cfrac1%7B6x%2B3%7D)
![\implies E[Y\mid X]=1+\dfrac1{6X+3}](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5Cmid%20X%5D%3D1%2B%5Cdfrac1%7B6X%2B3%7D)
This random variable is undefined only when
which is outside the support of
, so we have
![E[Y]=E\left[1+\dfrac1{6X+3}\right]=\displaystyle\int_0^1\left(1+\frac1{6x+3}\right)f_X(x)\,\mathrm dx=\frac87](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5Cleft%5B1%2B%5Cdfrac1%7B6X%2B3%7D%5Cright%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cleft%281%2B%5Cfrac1%7B6x%2B3%7D%5Cright%29f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac87)