Answer:
<h2>3.6°</h2>
Step-by-step explanation:
The question is incomplete. Here is the complete question.
Find the angle between the given vectors to the nearest tenth of a degree.
u = <8, 7>, v = <9, 7>
we will be using the formula below to calculate the angle between the two vectors;

is the angle between the two vectors.
u = 8i + 7j and v = 9i+7j
u*v = (8i + 7j )*(9i + 7j )
u*v = 8(9) + 7(7)
u*v = 72+49
u*v = 121
|u| = √8²+7²
|u| = √64+49
|u| = √113
|v| = √9²+7²
|v| = √81+49
|v| = √130
Substituting the values into the formula;
121= √113*√130 cos θ
cos θ = 121/121.20
cos θ = 0.998
θ = cos⁻¹0.998
θ = 3.6° (to nearest tenth)
Hence, the angle between the given vectors is 3.6°
First Place Vote: 4x867= 3468
Second Place Vote: 2x301= 602
Third Place Vote: 1x432= 432
3468+602+432= 4502.
Your answer is therefore D.
I hope this helps! :)
Answer:
The correct answer for this is : A. Point and Line
Step-by-step explanation:
The lines are said to be parallel to each other if they do not intersect each other at any point. So, for any number of lines to be parallel we must have lines and no intersection points between them then only we can say the given number of lines are parallel to each other
So, the terms which are used to explain the term parallel lines here are : line and the point.
And the both terms point and a line are undefined in the geometry.
Hence, the correct answer for this is : A. Point and Line