I can’t see nun, sorry kid.
Answer:
Now we can calculate the p value with the following probability:
Since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true proportion for this case is higher than 0.5
Step-by-step explanation:
Data given and notation
n=75 represent the random sample taken
estimated proportion of interest
is the value that we want to test
represent the significance level
Confidence=95% or 0.95
z would represent the statistic
represent the p value
System of hypothesis
We want to verify if the true proportion is higher than 0.5:
Null hypothesis:
Alternative hypothesis:
The statistic is given by:
(1)
Replacing the info given we got:
Now we can calculate the p value with the following probability:
Since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true proportion for this case is higher than 0.5
Answer:
4 |x+7| divided by 3.
Step-by-step explanation:
This cannot be divided any further.
Answer:
5/6
Step-by-step explanation:
1/3 + 1/2 is a simple addition fraction problem.
You'd find the LCM (lowest common denominator) which is 6. First, we'll take 1/3 which the denominator becomes 6. You see one side has been basically multiplied by 2, so you'd do it to both sides, giving us 2/6. Next, we do the same thing with 1/2. 2 -> 6 1 -> 3. 3/6. So finally, we have 3/6 + 2/6, which is 5/6.
Answer:
Step-by-step explanation:
The question says,
A roulette wheel has 38 slots, of which 18 are black, 18 are red,and 2 are green. When the wheel is spun, the ball is equally likely to come to rest in any of the slots. One of the simplest wagers chooses red or black. A bet of $1 on red returns $2 if the ball lands in a red slot. Otherwise, the player loses his dollar. When gamblers bet on red or black, the two green slots belong to the house. Because the probability of winning $2 is 18/38, the mean payoff from a $1 bet is twice 18/38, or 94.7 cents. Explain what the law of large numbers tells us about what will happen if a gambler makes very many betson red.
The law of large numbers tells us that as the gambler makes many bets, they will have an average payoff of which is equivalent to 0.947.
Therefore, if the gambler makes n bets of $1, and as the n grows/increase large, they will have only $0.947*n out of the original $n.
That is as n increases the gamblers will get $0.947 in n places
More generally, as the gambler makes a large number of bets on red, they will lose money.