Finding a "common relationship" between two measurements is imperative. Ex. We know that there are 3 feet in a yard, and you are trying to figure out how many feet are in 3 yards. Knowing there are 3 feet in a yard is the common relationship. Multiply 3 by 3 to find how many feet are in three yards. I hope this helped. It's kind of confusing to explain. Anymore questions, just ask me!<3
<span>1.
<span>(02.03) </span>
<span>Lea la siguiente afirmación: El segmento de línea AB es congruente con el segmento de línea QR. </span>
<span><span>¿Cuál de las siguientes es una declaración equivalente? </span><span>(4 puntos) </span></span>
<span> AB Overbar es similar a Overbar QR Overbar </span>
<span>AB es igual a Overbar QR Overbar </span>
<span>AB es un elemento de sobrerrango QR La Overbar </span>
<span>AB es congruente con Overbar QR </span>
<span>. </span>
<span>(02.03) </span>
<span><span>¿Qué enunciado es realmente el resultado de una transformación rígida? </span><span>(4 puntos) </span></span>
<span> La imagen previa es congruente con la imagen. </span>
<span>La imagen es más grande que la imagen previa. </span>
<span>La imagen previa es más grande que la imagen. </span>
<span><span>Cada uno es único; </span><span>no se puede hacer una declaración general sobre el tamaño.</span></span>
</span>
5/8 is the length. Just divide 15/56 by 3/7.
Answer:
1: equivalent
2: equivalent
3: not equivalent
Step-by-step explanation:
for 1 & 2, you just switch the terms, but for 3, the 6z is not negative in the first expression, but it is in the second.
Answer:
6*x-8
Step-by-step explanation:
Remember pemdas and go down the list
Product is a form of multiplication and less than is subtraction