Answer:
x = 17.5 and y = 35
Step-by-step explanation:
2x + 10 = y + 10 ( alternate angles )
subtract 10 from both sides
2x = y ⇒ 6x = 3y → (1)
the sum of the 3 angles in the triangle = 180°
6x + y + 10 + 30 = 180 ( replace 6x by 3y )
3y + y + 40 = 180
4y + 40 = 180 ( subtract 40 from both sides )
4y = 140 ( divide both sides by 4 )
y = 35
substitute y = 35 into (1)
2x = 35 ( divide both sides by 2 )
x = 17.5
Answer:
w=2r
r= w/2
r- w/2 = 0
w -2r= 0
Step-by-step explanation:
Let w be the number of weeks and r be the number of recipes learnt . So he will learn 2 recipes each week .Equating gives
w=2r
when w= 1
w= 2(1) = 2
For 1st week 2 recipes are learned
when w= 2
w= 2( 2) = 4
For 2nd week 4 recipes are learned.
or
when r= 2
r= w/2
r =2/2 = 1 one recipe is learned in half of the week
r- w/2 = 0
or
w -2r= 0
Answer:
The answer is 23/16 but if you want it to be a mixed number, it is 1 7/16.
Step-by-step explanation:
Answer:
3
Step-by-step explanation:
they always make some kind of angle usually 90 degress.
![\bf \cfrac{(x-2)(x+3)}{2x+2}\implies \cfrac{x^2+x-6}{2x+2}~~ \begin{array}{llll} \leftarrow \textit{2nd degree polynomial}\\ \leftarrow \textit{1st degree polynomial} \end{array} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{vertical asymptote}}{2x+2=0}\implies 2x=-2\implies x=-\cfrac{2}{2}\implies x=-1](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%28x-2%29%28x%2B3%29%7D%7B2x%2B2%7D%5Cimplies%20%5Ccfrac%7Bx%5E2%2Bx-6%7D%7B2x%2B2%7D~~%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cleftarrow%20%5Ctextit%7B2nd%20degree%20polynomial%7D%5C%5C%20%5Cleftarrow%20%5Ctextit%7B1st%20degree%20polynomial%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvertical%20asymptote%7D%7D%7B2x%2B2%3D0%7D%5Cimplies%202x%3D-2%5Cimplies%20x%3D-%5Ccfrac%7B2%7D%7B2%7D%5Cimplies%20x%3D-1)
when the degree of the numerator is greater than the denominator's, then it has no horizontal asymptotes.
quick note:
when the degree of the numerator is 1 higher than the degree of the denominator, then it has an slant-asymptote, so this one has a slant-asymptote.